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Connectivity Map: a library of perturbational responses
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Library of perturbational signatures

Desired attributes of library

Comprehensive (like library of Congress)

Information-rich readouts
(not optimized to particular questions)

Easy to look things up (like Google search)

Easy to compare to non-CMap data
(like image search)

Accessible to bench experimentalists
and computationalists




Connectivity Map

The Connectivity Map: Using
Gene-Expression Signatures to Connect
Small Molecules, Genes, and Disease
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(Science 20006)

To pursue a systematic approach to the discovery of functional connections among diseases, genetic
perturbation, and drug action, we have created the first installment of a reference collection of
gene-expression profiles from cultured human cells treated with bioactive small molecules,
together with pattern-matching software to mine these data. We demonstrate that this
“Connectivity Map” resource can be used to find connections among small molecules sharing a
mechanism of action, chemicals and physiological processes, and diseases and drugs. These results
indicate the feasibility of the approach and suggest the value of a large-scale community
Connectivity Map project.



Connectivity Map Concept

Fig. 1. The Connectivity Map
Concept. Gene-expression pro-
files derived from the treat-
ment of cultured human cells
with a large number of per-
turbagens populate a reference
database. Gene-expression sig-
natures represent any induced
or organic cell state of interest
(left). Pattern-matching algo-
rithms score each reference
profile for the direction and
strength of enrichment with the
query signature (center). Per-
turbagens are ranked by this
“connectivity score”; those at
the top (“positive”) and bottom
(“negative”) are functionally
connected with the query state

(right) through the transitory feature of common gene-expression changes.

BIOLOGICAL STATE
OF INTEREST

(SIGNATURE)

ix

-
AR

&
&

.'...‘...C
©

|

-

down

query

REFERENCE DATABASE

L

strong
positive

(PROFILES)

I

. »
|

11

—

weak
positive

Ep®
=DS -

-«

S0 20 28 0 o

2 Lyl

CONNECTIONS
ﬁg positive
= i
=,
~  output
L ‘
= o Wl
= negative
s:;ong
negative



Pattern-Matching Algorithm

For these reasons, we adopted a nonpara-
metric, rank-based pattern-matching strategy
based on the Kolmogorov-Smirnov statistic (/7),
as we described previously and later formalized
in Gene Set Enrichment Analysis (GSEA)
(2, 12, 13). The approach starts with a “query
signature” and assesses its similarity to each of
the reference expression profiles in the data set. A
query signature is any list of genes whose
expression is correlated with a biological state of
interest. Examples could include genes correlated
with a subtype of disease (e.g., drug-resistant
versus drug-sensitive leukemia) or regulated by a
biological process of interest (e.g., experimental
activation of a signaling pathway). Each gene in
the query signature carries a sign, indicating
whether it is up-regulated or down-regulated.
Because the query signature is unitless, it is not
tied to any technology platform.
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Connectivity Analytics

Treatment instances were rank ordered with respect to a given query signature
using a gene-set enrichment metric based on the Kolmogorov-Smirnov statistic
(1, 2), as follows. For each instance j, compute an enrichment score for the set of
probe sets (‘tags’) representing the up- or down- regulated genes in the
signature; ks'y, and ks'qgown, respectively. Let n be the total number of probe sets
(22,283) and { be the number of tags. Construct a vector V of the position (1... n)
of each tag in the ordered list of all probe sets (see Data Preprocessing, above)
and sort these components in ascending order such that V(j) is the position of tag
J,wherej=1,2, ..., t. Compute the following two values:

a= rn:ax{—j - M}

=t n

...and set ks' = a, if a > b or ks' = -b if b > a. The connectivity score S'is set to
zero where ks, and ks'goun have the same algebraic sign. Otherwise, set s' =
ks'uyp - kSdown, p = max(s') and g = min(s') across all instances. The connectivity
score S' for the non-zero instances is defined as §' / p where s’ > 0, or —(s'/ q)
where s’ < 0. Instances are then ranked in descending order of S and ksyp.
Finding multiple independent instances of the same perturbagen with high (or

low) rankings was taken to indicate positive (or negative) connectivity between
that perturbagen and the biology represented in the query signature.

The significance of a particular distribution of a set of instances in the ordered list
of all instances was estimated by permutation, as follows. The Kolmogorov-
Smirnov statistic is computed for the set of t instances of interest in the ordered
list of n instances as above, giving an enrichment score KSy. Then, for each of r
trials, select t instances at random from the set of n instances and compute KS,,
and count the number of times s that |KS,| 2 |KSq| is true. The frequency of this
event (s/ r) can be taken as a (two-sided) p-value. We set r=10,000.



Some other Pattern-Matching Algorithms

TABLE 1

The Similarities and Differences of Pattern-Matching Algorithms Used in Connectivity Map Analysis

Pattern-
Matching
Algorithms

KS test

WTCS

ssCMap

ordered

ssCMap
unordered

XSum

XCos

Query Signature

e Upregulated
gene symbols

e Downregulated
gene symbaols

o Upregulated
gene symbols

e Downregulated
gene symbols

e Upregulated
gene symbals

e Downregulated
gene symbols

e Fold change
values

e Upregulated
gene symbols
¢ Downregulated
gene symbols

e Upregulated
gene symbols

e Downregulated
gene symbols

¢ Upregulated
gene symbols

e Downregulated
gene symbols

e Fold change
values

Descriptions

e Nonparametric
e Genes are
converted to rank

e Nonparametric
e Genes are
converted to rank

Genes are ordered
using the absolute
value of their fold
change values

No particular
ordering of
the genes; +1
for upregulated
genes and —1
for downregulated
genes

Limited to the top
N and bottom N
of the genes in
reference profile

Limited to the
top N and
bottom N
of the genes
in reference
profile

Technical Limitations

e Query gene signatures
must be rank-ordered
e The CS is set to zero if
ES for the upregulated
and downregulated genes
have the same algebraic sign

The CS is set to zero if ES
for the upregulated and
downregulated genes
have the same algebraic sign

Fold change value of the
query genes are required

The significance of which
genes are more important
could not be determined
because all genes take
on the value of either +1
(upregulated) or —1
(downregulated)

Execution of XSum will
collapse if there are no
overlapping query gene
signatures with the genes
in the reference profile

e Fold change value of the
query genes is a
prerequisite for XCos
execution

o Execution of XCos will
collapse if there are
nonoverlapping query
gene signatures with
the genes in the reference
profile

e Must have at least 2 query
genes overlapping with the
genes in the reference profile
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(Lee, Cheong, Tan, Adv. Mol. Path. 2019)



CMap Results

HDAC inhibitors. We first determined whether a query signature derived from a class of small molecules could recover those
same compounds in the Connectivity Map. A recent report (14) described gene-expression responses of T24 (bladder), MDA
435 (breast carcinoma), and MDA 468 (breast carcinoma) cells treated with three histone deacetylase (HDAC) inhibitors:
vorinostat (also known as suberoylanilide hydroxamic acid or SAHA), MS-27-275, and trichostatin A. The authors of this study
defined a 13-gene signature (8 up-regulated and 5 downregulated genes; Signature S1) that was used to query our database.
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Next-Generation Connectivity Map

Cell

A Next Generation Connectivity Map: L1000 Platform
and the First 1,000,000 Profiles
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How to make it high-throughput and
cheaper?

 Measure a small number of gene expression but still can infer
the other genes (genome-wide)

* Need a new technique
* Need a new deconvolution method (computational)



L1000

Reduced Representation of Transcriptome

We hypothesized that it might be possible to capture at low
cost any cellular state by measuring a reduced representation
of the transcriptome. To explore this, we analyzed 12,031 Affy-
metrix HGU133A expression profiles in the Gene Expression
Omnibus (GEOQO). We used these to identify the optimal number
of informative transcripts (k), which we term “landmark”
transcripts. If kK was too small, too much information might
have been lost, whereas if k was too large, sufficient cost
reduction compared to the entire transcriptome might be not
have been achieved. This analysis showed that 1,000 land-
marks were sufficient to recover 82% of the information in
the full transcriptome (STAR Methods). The selection of the
1,000 landmarks was done using a data-driven approach rather
than selecting transcripts based on prior biological knowledge,
as detailed in STAR Methods.



Defining L1000

METHOD DETAILS

Dataset for Landmark selection (DSggo)

We assembled a large, diverse collection of 12,063 gene expression samples profiled on Affymetrix HG-U133A microarrays from the
Gene Expression Omnibus (GEO) (Edgar et al., 2002). These data were used to identify the subset of universally informative tran-
scripts to be measured, which we term ‘Landmark Genes' (Dataset DSgeo).

Selecting landmark transcripts

As DSgeo contains a non-uniform representation of various aspects of biology (for example certain tumor types such as breast and
lung cancer were disproportionately represented), we applied Principal Component Analysis (PCA) as a dimensionality reduction pro-
cedure to minimize bias toward any particular lineage or cellular state. In this reduced eigenspace of 386 components (which ex-
plained 90% of the variance), cluster analysis was performed to identify tight clusters of commonly co-regulated transcripts. We
applied an iterative peel-off procedure to select the centroids (Tseng and Wong, 2005). Specifically, at each iterative step in the tight
clustering process, the k-means algorithm with k ranging 20-100 was applied repeatedly on 100 independent random subsamples
each comprising 75% of the original data. This procedure yielded a consensus matrix that contained the proportion of trials in which a
pair of genes were in the same cluster. Thresholding the consensus matrix yielded sets of genes that co-clustered in more than 80%
of the trials. The genes belonging to the stable clusters were noted, excluded from the data and the procedure was repeated to iden-
tify additional clusters. Because high-dimensional data is challenging to partition into definitive clusters, the advantage of this
approach is that gene-gene clusters are derived through the tendency of genes to be grouped together under repeated resampling
and hence are more robust to the initialization and cluster size thresholds. Transcripts nominated as landmarks through this process
were then tested empirically to assess ability to measure levels accurately in the L1000 assay as described in “Probe and primer
design for the L1000 assay” and experimental validation as described in the L1000 reproducibility sections below.

Evaluating performance of reduced representations of the transcriptome

To simulate performance of measuring a subset of the transcriptome, we asked what number of landmarks (k) would optimally
recover the observed connections seen in the pilot Connectivity Map dataset based on Affymetrix arrays (Dataset DScmap-arrx). Spe-
cifically, prior work indicated that 25 query signatures yielded robust and expected connections to small molecules in the CMap pilot
dataset (Table S51). We therefore used those 25 signatures to query the inferred DS¢cuap-arrx dataset for various values of k, counting
how often we recovered the connections cbserved in the original dataset at a comparable rank based on the Kolmogorov-Smirnov
statistic. At values of k ranging from 100-10,000, we generated an imputed version of DScmap-arrx Using OLS regression (trained on
samples from DSgeo) with the k landmarks as the independent variables, queried it with the benchmark signatures, and assessed the
percentage of connections that were recovered.



Defining L1000

Baseline expression of landmark genes across a diversity of tissue types

Our procedure for selecting Landmark Genes was data-driven and the simulations presented above indicate that both the landmark
and inferred genes capture relevant information about cell state. However, given a new state, any inference algorithm will only work if
a fair number of the landmark genes are expressed in that state. We examined expression across lineage using the Genotype Tissue
Expression (GTEx) RNA-seq dataset (DSgTex-rna-seq) Of 3,176 patient-derived expression profiles from 30 different tissue types (Fig-
ure S1B). We quantified the expression levels of the landmark genes reported in the dataset and observed that at a RPKM threshold
of 1 at least 86% of Landmark Genes are expressed in each of the 3,176 samples (with an average of 92% expressed in each sample),
and that range of expression is similar across tissue types.

Functional enrichment analysis of landmark gene content
Our data-driven procedure suggested genes to include as landmarks based on analysis of the 12,063 sample compendium DSgeo.
We then asked if genes suggested by this data driven approach were enriched in particular known biclogical pathways or categories.
For every landmark gene we accessed from NCBI entrez its current gene description and family assignment. We also annotated
every landmark gene with the pathway (as defined in MSigDB) in which it is thought to function (when available). Finally, we looked up
its biological/molecular category from Gene Ontology (GO). These annotations were analyzed for functional enrichment to ask if the
landmarks, when considered as a set, are dominated by a few functions or if on the whole they map to many different functions. For
example, at one extreme the transcriptionally active genes could belong to basic regulatory processes (e.g transcription factors).
To do this analysis we intersected the 978 landmarks with a database of 1,533 gene sets compiled in Gene Ontology using the
hypergeometric statistic (gene to GO gene ontology, conditional test for over-representation). We used the R Bioconductor package
GOstats (v2.36.0) and the ontology from GO.db (v3.2.2). The results show that while some categories are enriched (e.g ATP binding,
nucleoside/nucleotide activity, transcription factor binding, kinase regulator activity) the percentage of the 978 genes that are in any
such set is small. While we did observe a number of classes to be enriched in the landmark genes, these categories tend to be generic
(e.g., enzyme binding, protein kinase binding, catalytic activity, ATP binding) and/or contain only a small fraction of the landmark
genes (e.g., protein kinase binding, which contains 84 of 978 landmarks). Taken together, we did not find any particular functional
category dominating the list of landmarks chosen.



Fig 1A: Overview of ligation-mediated
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Fig 1B: Deconvoluting 1,000 landmark genes
using 500 bead colors
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L1000 to RNA-seq

Comparison of L1000 to RNA-Seq

RNA-seq has become the standard for gene expression
profiling, and thus, we sought to benchmark L1000 against it.
We note that while RNA-seq is attractive given its unbiased
nature, it suffers from inability to detect non-abundant tran-
scripts without deep sequencing, which results in higher costs.
The L1000 platform is hybridization based, thus making the
detection of non-abundant transcripts feasible. As an initial
assessment of cross-platform performance, mRNA samples
from six cell lines were profiled on L1000, by Affymetrix U133A
and lllumina BeadChip arrays, and by RNA-seq. Hierarchical
clustering of these data grouped samples by cell type, not mea-
surement platform (Figures 1D and 1E [upper panel]).

To more extensively compare L1000 to RNA-seq, we analyzed
3,176 samples (previously sequenced by the GTEx Consortium
[2015]) profiled on both platforms. This analysis showed that
cross-platform similarity was high (median self-correlation,
0.84), with a right-shifted distribution compared to non-self
correlations (Figure 1E [lower left panel]). Recall analysis similarly
showed that 98% of samples had a sample recall >99% (indi-
cating 99th percentile) (STAR Methods). Taken together, these
results indicate a strong degree of similarity of profiles across
L1000 and RNA-seq platforms.
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L1000 to RNA-seq

Inferring Gene Expression from L1000 Landmarks

Using 8,555 RNA-seq samples (dataset DSgrex-maseq) @S an
independent test set, we used landmark transcript measure-
ments to infer the remainder of the transcriptome. As a test of
inference accuracy, we analyzed gene-level recall (Rgeng) for
each of the inferred genes and assessed performance by
comparing the result to a null distribution of correlations between
all inferred transcripts and all measured transcripts. This analysis
showed that inference was accurate (defined as Rgene > 0.95) for
9,196 of the 11,350 inferred genes (81%). When combined with
the 978 measured landmarks, the L1000 platform thus measures
or infers with high fidelity 83% of transcripts, but yields poor
inference for 17% (Figure 1E [lower panel right] and Table S3).
Inferences for these 17% were therefore not used in any of the
analyses that follow.

D
PC3 B HelLa
MCF7 K562
Cell type oo BEEN = MDA-MB-453 H HL60
Platform HEEEENEEEENEEENEENENEENENE E L1000 B RNAseq
Affymetrix B lllumina
E
= 15 B = 151
0 2
2 5
5 10 E x 10
5 4
$ i
£ 54 . x 54
= 11,556 g 11,556
o 933 LM LM+INF £ measured
o genes genes & genes
0 T T 1T T T 1 < 04— T T 1
0 5 10 15 0 5 10 15 0 5 10 15
RNAseq (logo RPKM)  RNAseq (logo RPKM) RNAseq (logo RPKM)
25 - Well-inferred
1.0 (9,196) |
Same Sample .................................................................
20 (3,176) 0.8
S
8 15 = 0.6 Notwell-
5 § inferred
13
S 104 o | genes
ﬂq-) 0 Different samples 0.4 (2,154)
(~5M)
5 0.2 1
0 T T T T 1 0 T T T 1
0 02 04 06 08 1.0 -1.0 0.0 1.0

Spearman correlation

Self-correlation



Fig 2: L1000 Dataset Coverage, Signature Generation & Data Access
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Fig 4. Reference Perturbagen Classes for CMap Discovery
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Query: Computing Similarities

Query methodology

The fundamental unit of CMap analysis is the query. A query (g) consists of a set of genes corresponding to any biological state of
interest. Each gene in the query carries a sign indicating whether it is upregulated or downregulated. Thus each query yields a pair of
mutually exclusive gene lists (9up, Ggown). The query is compared to each signature in the CMap reference database (Touchstone)
using the similarity metric described below to assess connectivity or the degree to which the upregulated query genes (g.,) appear
toward the top of the rank-ordered signature and the downregulated query genes (Ggown) appear toward the bottom of the signature
(positive connectivity) or vice-versa (negative connectivity). The result of a query is a rank ordered list of CMap signatures ordered by
their connectivity scores.

Computing similarities - Weighted Connectivity Score (WTCS)

The weighted connectivity score (WTCS) represents a non-parametric similarity measure based on the weighted Kolmogorov-
Smirnov enrichment statistic (ES) described previously (Subramanian et al., 2005). WTCS is a composite, bi-directional version
of ES. For a given query gene set pair (qup, 9uown) and a reference signature r, WTCS is computed as follows:

Wo, = (Esup - ESdOWﬂ)/z! if sQn(ESUD) q&sQn(ESGOW”)
ar 0, otherwise

Where ES,; is the enrichment of g, inr and ES4,,,,, is the enrichment of ., inr. WTCS ranges between —1 and 1. It will be pos-
itive for signatures that are positively related and negative for those that are inversely related, and near zero for signatures that are
unrelated. A null (0) score is assigned for cases when both ES,; and ESgo.n, are the same sign.

Normalization of Connectivity Scores

To allow for comparison of connectivity scores across cell types and perturbation types, the scores are normalized to account for
global differences in connectivity that might occur across these covariates. Given a vector of WTCS values w resulting from a query,
we normalize the values within each cell line and perturbagen type to obtain normalized connectivity scores (NCS) as follows:

NCS, = { Wczr/ﬂ.:,a if sgn(wC:,) >0
W.:,r/u;, otherwise
where NCS.;, w1, nl; and pu_; are the normalized connectivity scores, raw weighted connectivity scores, and signed means of the
raw weighted connecti\éity scores (the mean of positive and negative values evaluated separately) within the subset of Touchstone
signatures corresponding to cell line ¢ and perturbagen type t, respectively.
Overall, this procedure is similar to that used in Gene Set Enrichment Analysis, with the addition of bidirectional gene sets (i.e., up
and down) as queries.



Connectivity Map Score (t)

Connectivity Map Score

Tau (1) compares an observed enrichment score to all others in a reference database. In principle, T can be computed by comparison
to scores from any database of reference signatures, and the most common approach is to generate a null distribution by random
permutation. However, a more stringent test that avoids having to make assumptions regarding the complex correlation structure of
gene expression data is to use a compendium of diverse, biologically relevant perturbational signatures, such as those in CMap-
L1000v1, as it is these reference signatures against which any novel connection must compete. Thus, query results are scored
with 7 as a standardized measure ranging from —100 to 100; a 7 of 90 indicates that only 10% of reference perturbations showed
stronger connectivity to the query. Because the reference is fixed, T can be used to compare results across queries - a connection
with a significant p value and FDR but low T would suggest a highly promiscuous relationship whose connections are not unique.

Calculating

While meaningful comparisons can be made between the NCS values of reference signatures with respect to query g, it is also useful
to assess if the connectivity between g and a particular signature r is significantly different from that cbserved between r and other
queries. This is done by comparing each observed NCS value ncs, . between the query g and a reference signature r to a distribution

of NCS values representing the similarities between a reference compendium of queries (Q.¢ and r. This procedure results in a stan-
dardized measure we refer to as Tau (1) that ranges from —100 to +100 and represents the percentage of queries in Q,es With a lower
INCS| than |ncs,,.|, adjusted to retain the sign of ncsg,, :

100 &
Tqr =SQN(NCS,,) N > “[Incsi, | <|nesq,|]
i=1

where ncs,, . is the normalized connectivity score for signature r w.r.t query g, ncs; , is the normalized connectivity score for signa-
ture r relative to the i-th query in Q,.rand N is the number of queries in Q.. Our standard practice is that Q. be comprised of queries
obtained from exemplar signatures of Touchstone perturbagens that match the cell line and perturbation type of signature r. In prin-
ciple any arbitrary compendium of gene sets (as long as they are large enough) could be used.

Summarization Across Cell Lines

When examining query results, it is often convenient to obtain a perturbagen-centric measure of connectivity that summarizes the
results observed in individual cell types. This can be particularly helpful when searching for connections that persist across cell lines
or when one is unsure which cell line to examine. Given a vector of normalized connectivity scores for perturbagen p, relative to
query g, across all cell lines in which p was profiled, a cell-summarized connectivity score is obtained using a maximum quantile
statistic:

NCS. .~ { Qn(ncspc) if |Qu(nesye) | = |Qo(nes,,) |
7] Quo(nesp) otherwise

where nes,, . is a vector of normalized connectivity scores for perturbagen p, relative to query g, across all cell lines in which p was
profiled, and Q; and Q,, are upper and lower quantiles respectively. This procedure compares the Q;; and Qy, quantiles of nes,, . and
retains whichever is of higher absolute magnitude. Thus, maximum quantile is more sensitive to signal in a subset of the cell lines than
measures of central tendency such as mean or median. In the analyses presented here, we used

Qn=67, Q,=33



3,000,000 profiles

The final LINCS dataset

>3M profiles

92,648 perturbations 253 contexts
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Genetic vs. chemical perturbation to inform MoA

MTOR
ACTB
HDAC2
MAP2K1
TYMS

HIF1A
IMPDH2
JAK3
ROCKT1

EGFR
KIT
CDK1
PARP2

AZD-8055
cytochalasin-b
NCH-51
selumetinib
raltitrexed

cobalt(ll)-chloride
mycophenolate-mofentil
AT-9283

Y-27632 CGS

gefitinib
cediranib
indirubin

CP

CGS “° " CRISPR

CcP

\

\

cp?

CRISPR

rucaparib CGS“° " CRISPR

¥ Connections to PCL exist

D
()
O

O
D

-25

T (connectivity score)

30



Applications



Fig 6A: Discovery of MOA

Query: Find compounds that induce the similarity gene expression profiles as query
signature.

Unannotated compound BRD-2751 showed strong connectivity to the Rho-associated
protein kinase (ROCK) PCL, suggesting that it might in fact be a ROCK inhibitor.
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Fig 6B: Discovery of Selective Compound

Query: Find compounds that induce the similarity gene expression profiles as Loss of function
(shRNAs CSKN1A1).

Results: One unannotated compound BRD-1868 showed strong connectivity to CSNK1A1
knock-down in two cell types.
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Fig 7B: Connecting Patients data to
explain resistance mechanisms
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Fig 7C: Connecting Patients data to
predict therapeutic efficacy
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Beyond Gene Expression-based CMap
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Proteomics & Chromatin Connectivity Map

Cell Systems

A Library of Phosphoproteomic and Chromatin
Signatures for Characterizing Cellular Responses to
Drug Perturbations
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compound treatment. Using protein covariance analyses, we
identified a large number of functional protein networks. For
example, we found that a poorly studied protein, CSorf22, is a novel component of the WBP11/PQBP1 splicing complex.
Depletion of CSorf22 leads to the aberrant splicing and expression of genes involved in cell growth and immunomodulation. In
summary, we show that by systematically measuring the tumor adaptive responses at the proteomic level, an understanding
could be generated that provides critical circuit-level biological insights for these pharmacologic perturbagens.



Cell Morphology Connectivity Map

PROTOCOL |

cell Painting’ a high-content image-based assay In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant

similarities and differences among samples based on these profiles. This protocol describes the design and execution of

° * L3 L °
fOI' mOI'phOlOglcal pIOflllng uSIng multIPIEXEd experiments using Cell Painting, which is a morphological profiling assay that multiplexes six fluorescent dyes, imaged in five
channels, to reveal eight broadly rel t cellular comp ts or organelles. Cells are plated in multiwell plates, perturbed with the
ﬂuorescent dyes treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Next, an automated image analysis software
identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, and
Mark-Anthony Bray!, Shantanu Singh!, Han Han2, Chadwick T Davis?, Blake Borgeson?2, Cathy Hartland?, so on) to produce a rich profile that is suitable for the detection of subtle phenotypes. Profiles of cell populations treated with
Maria Kost-Alimova3, Sigrun M Gustafsdottir?, Christopher C Gibson? & Anne E Carpenter! different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical
or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease.

ing Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. 2Recursion Pharmaceuticals, Salt Lake City, Utah, USA. Cell culture and image acquisition takes 2 weeks; feature extraction and data analysis take an additional 1-2 weeks.

e, Massachusetts, USA. Correspondence should be addressed

Nucleus Endoplasmic reticulum Nucleoli, cytoplasmic RNA Actin, Golgi, plasma membrane

1may
3Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambrid,
to C.C.G. (chris.gibson@recursionpharma.com) or A.E.C. (anne@broadinstitute.org).

Figure 1 | The Cell Painting assay in U20S and A549 cells. The columns display the five channels imaged in the Cell Painting assay protocol (left to right)
as imaged using the ImageXpress XLS microscope: Hoechst 33342 (DNA), concanavalin A (endoplasmic reticulum), SYTO 14 (nucleoli and cytoplasmic RNA),
phalloidin (actin) and WGA (Golgi and plasma membrane), and MitoTracker Deep Red (mitochondria). Scale bars, 20 pm. See Table 1 for additional details
about the stains and channels imaged.

Figure 2 | Overview of the strategy of

morphological profiling using an image-based
assay. After perturbing, staining and imaging
cells, the open-source software CellProfiler is

o e x 384 wells x N plates used to extract ~1,500 morphological features
® of each cell. The collection of features is known

Genetic or Experiments in Microscopy Image analysis Morphological profiles as a profile: it reflects the phenotypic state of
chemical multiwell imaging the cells in that sample, and it can be compared

Refubations Rldies with other profiles to make inferences.




Cell Morphology Connectivity Map

MOLECULAR ONCOLOGY 1(2007) 84-96
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The morphologies of breast cancer cell lines in three-dimensional
assays correlate with their profiles of gene expression

Paraic A. Kenny™", Genee Y. Lee™', Connie A. Myers®?, Richard M. Neve®,
Jeremy R. Semeiks®, Paul T. Spellman®, Katrin Lorenz®*, Eva H. Lee®,

Mary Helen Barcellos-Hoff ®, Ole W. Petersen®, Joe W. Gray®,

Mina J. Bissell**

“Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, One Cyclotron Road, MS 977-225A,
Berkeley, CA 94720, USA

YStructural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, University of Copenhagen,
DK-2200 Copenhagen N, Denmark

Round Mass Grape-like Stellate

+ Organized nuclei « Disorganized nuclei « Disorganized nuclei « Disorganized nuclei
* Robust cell-cell + Robust cell-cell « Poor cell-cell « Elongated cell body
adhesion adhesion adhesion with invasive
processes

Figure 1 - Breast cell line colony morphologies in 3D culture fall into four distinct groups. A panel of 25 breast cell lines were cultured in three-

dimensions and grouped into four distinct morphologies. A sch ic and key descrip of each phology is shown in addition to phase

contrast and F-actin and nuclear fl images of rep ive cell lines of each morphology: for Round, S1 is shown; Mass, BT-474;
Grape-like, SK-BR-3; and Stellate, MDA-MB-231. Scale bars: phase contrast, 50 um; fluorescence, 20 pm.
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A chemical-genetic interaction map of small
molecules using high-throughput imaging in
cancer cells

Marco Breinigh*', Felix A Klein®', Wolfgang Huber*" & Michael Boutros™*""
Abstract Mol Syst Biol. 2015 Dec 23;11(12):846.

Small molecules often affect multiple targets, elicit off-target
effects, and induce genotype-specific responses. Chemical genet-
ics, the mapping of the genotype dependence of a small mole-
cule’s effects across a broad spectrum of phenotypes can identify
novel mechanisms of action. It can also reveal unanticipated
effects and could thereby reduce high attrition rates of small
molecule development pipelines. Here, we used high-content
screening and image analysis to measure effects of 1,280 phar-
macologically active compounds on complex phenotypes in
isogenic cancer cell lines which harbor activating or inactivating
mutations in key oncogenic signaling pathways. Using multipara-
metric chemical-genetic interaction analysis, we observed pheno-
typic gene—drug interactions for more than 193 compounds, with
many affecting phenotypes other than cell growth. We created a
resource termed the Pharmacogenetic Phenome Compendium
(PGPC), which enables exploration of drug mode of action, detec-
tion of potential off-target effects, and the generation of
hypotheses on drug combinations and synergism. For example,
we demonstrate that MEK inhibitors amplify the viability effect
of the clinically used anti-alcoholism drug disulfiram and show
that the EGFR inhibitor tyrphostin AG555 has off-target activity
on the proteasome. Taken together, this study demonstrates how
combining multiparametric phenotyping in different genetic
backgrounds can be used to predict additional mechanisms of
action and to reposition clinically used drugs.
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