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Abstract: Pathway analysis has become the first choice
for gaining insight into the underlying biology of
differentially expressed genes and proteins, as it reduces
complexity and has increased explanatory power. We
discuss the evolution of knowledge base–driven pathway
analysis over its first decade, distinctly divided into three
generations. We also discuss the limitations that are
specific to each generation, and how they are addressed
by successive generations of methods. We identify a
number of annotation challenges that must be addressed
to enable development of the next generation of pathway
analysis methods. Furthermore, we identify a number of
methodological challenges that the next generation of
methods must tackle to take advantage of the techno-
logical advances in genomics and proteomics in order to
improve specificity, sensitivity, and relevance of pathway
analysis.

Introduction

Techniques such as high-throughput sequencing and gene/

protein profiling techniques have transformed biological research

by enabling comprehensive monitoring of a biological system.

Irrespective of the technology used, analysis of high-throughput

data typically yields a list of differentially expressed genes or

proteins. This list is extremely useful in identifying genes that may

have roles in a given phenomenon or phenotype. However, for

many investigators, this list often fails to provide mechanistic

insights into the underlying biology of the condition being studied.

In this way, the advent of high-throughput profiling technologies

presents a new challenge, that of extracting meaning from a long

list of differentially expressed genes and proteins.

One approach to this challenge has been to simplify analysis by

grouping long lists of individual genes into smaller sets of related

genes or proteins. This approach reduces the complexity of

analysis. Researchers have developed a large number of

knowledge bases to help with this task. The knowledge bases

describe biological processes, components, or structures in which

individual genes and proteins are known to be involved in, as well

as how and where gene products interact with each other. One

example of this idea is to identify groups of genes that function in

the same pathways.

Analyzing high-throughput molecular measurements at the

functional level is very appealing for two reasons. First, grouping

thousands of genes, proteins, and/or other biological molecules by

the pathways they are involved in reduces the complexity to just

several hundred pathways for the experiment. Second, identifying

active pathways that differ between two conditions can have more

explanatory power than a simple list of different genes or proteins

[1].

The goals of this review are to i) describe the existing knowledge

base–driven pathway analysis methods, ii) discuss limitations of

each class of methods, and iii) describe the challenges not yet

addressed by any method.

Existing Pathway Analytic Approaches

The term ‘‘pathway analysis’’ has been used in very broad

contexts in the literature [2]. It has been applied to the analysis of

Gene Ontology (GO) terms (also referred to as a ‘‘gene set’’),

physical interaction networks (e.g., protein–protein interactions),

kinetic simulation of pathways, steady-state pathway analysis (e.g.,

flux-balance analysis), and in the inference of pathways from

expression and sequence data. However, the definition of a

‘‘pathway’’ in some of these uses may be misleading or incorrect.

For instance, the cellular compartment ontology in GO does not

describe a pathway.

It is beyond the scope of this review to discuss the large number

of analytic methods covered by such a broad application of the

term ‘‘pathway analysis.’’ Therefore, this review focuses on

methods that exploit pathway knowledge in public repositories

such as GO or Kyoto Encyclopedia of Genes and Genomes

(KEGG), rather than on methods that infer pathways from

molecular measurements. We call this approach knowledge base–

driven pathway analysis. It identifies pathways that may be affected

in a condition by correlating information in at least one pathway

knowledge base with gene expression patterns for the condition.

The result is differential expression of a set of genes or proteins

rather than a list of individual genes.

Instead of individually reviewing a large number of pathway

analysis approaches, our goal here is to group approaches by the

type of analysis they perform and discuss their relative merits.

However, for those desiring specific information about individual

tools, Text S2 provides feature comparisons for a number of

individual tools in each group.
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Virtually all of the approaches and tools discussed here are

independent of the data generated from most high-throughput

technologies, including next-generation sequencing data and the

knowledge bases used for pathway annotations. In this review, we

use gene expression measurements as example data for discussing

and explaining various approaches.

First Generation: Over-Representation Analysis (ORA)
Approaches

The immediate need for functional analysis of microarray gene

expression data and the emergence of GO during that period gave

rise to over-representation analysis (ORA), which statistically

evaluates the fraction of genes in a particular pathway found

among the set of genes showing changes in expression (Table 1). It

is also referred to as ‘‘262 table method’’ in the literature [3].

ORA uses one or more variations of the following strategy [4–11]

(Figure 1): first, an input list is created using a certain threshold or

criteria. For example, a researcher may choose genes that are

differentially over- or under-expressed in a given condition at a

false discovery rate (FDR) of 5%. Then, for each pathway, input

genes that are part of the pathway are counted. This process is

repeated for an appropriate background list of genes (e.g., all genes

measured on a microarray). Next, every pathway is tested for over-

or under-representation in the list of input genes. The most

commonly used tests are based on the hypergeometric, chi-square,

or binomial distribution. We refer the readers to recent

comparisons of ORA tools for more details [12,13]. Many of the

ORA tools differ very slightly from each other as they use the same

Table 1. Examples of pathway analysis tools in each generation.

Name Availability Reference

ORA tools

Onto-Express Web (http://vortex.cs.wayne.edu) [4,5]

GenMAPP Standalone (http://www.genmapp.org) [11,71]

GoMiner Standalone, Web (http://discover.nci.nih.gov/gominer) [72,73]

FatiGO Web (http://babelomics.bioinfo.cipf.es) [74]

GOstat Web (http://gostat.wehi.edu.au) [7]

FuncAssociate Web (http://llama.mshri.on.ca/funcassociate/) [6]

GOToolBox Web (http://genome.crg.es/GOToolBox/) [10]

GeneMerge Standalone, Web (http://genemerge.cbcb.umd.edu/) [9]

GOEAST Web (http://omicslab.genetics.ac.cn/GOEAST/) [75]

ClueGO Standalone (http://www.ici.upmc.fr/cluego/) [76]

FunSpec Web (http://funspec.med.utoronto.ca/) [77]

GARBAN Web [78]

GO:TermFinder Standalone (http://search.cpan.org/dist/GO-TermFinder/) [8]

WebGestalt Web (http://bioinfo.vanderbilt.edu/webgestalt/) [79]

agriGO Web (http://bioinfo.cau.edu.cn/agriGO/) [80]

GOFFA Standalone, Web (http://edkb.fda.gov/webstart/arraytrack/) [81]

WEGO Web (http://wego.genomics.org.cn/cgi-bin/wego/index.pl) [82]

FCS tools

GSEA Standalone (http://www.broadinstitute.org/gsea/) [21,29]

sigPathway Standalone (BioConductor) [22]

Category Standalone (BioConductor) [24]

SAFE Standalone (BioConductor) [30]

GlobalTest Standalone (BioConductor) [15]

PCOT2 Standalone (BioConductor) [17]

SAM-GS Standalone (http://www.ualberta.ca/,yyasui/software.html) [83]

Catmap Standalone (http://bioinfo.thep.lu.se/catmap.html) [84]

T-profiler Web (http://www.t-profiler.org) [85]

FunCluster Standalone (http://corneliu.henegar.info/FunCluster.htm) [86]

GeneTrail Web (http://genetrail.bioinf.uni-sb.de) [87]

GAzer Web [88]

PT-based tools

ScorePAGE No implementation available [37]

Pathway-Express Web (http://vortex.cs.wayne.edu) [38,39]

SPIA Standalone (BioConductor) [40]

NetGSA No implementation available [43]

doi:10.1371/journal.pcbi.1002375.t001
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statistical tests as well as overlapping pathway databases (Table

S1).

Limitations. Despite the availability of a large number of tools

and their widespread usage, ORA has a number of limitations. First,

the different statistics used by ORA (e.g., hypergeometric

distribution, binomial distribution, chi-square distribution, etc.)

are independent of the measured changes. This means that these

tests consider the number of genes alone and ignore any values

associated with them such as probe intensities. By discarding this

data, ORA treats each gene equally. However, the information

about the extent of regulation (e.g., fold-changes, significance of a

change, etc.) can be useful in assigning different weights to input

genes, as well as to the pathways they are involved in, which in turn

can provide more information than current ORA approaches.

Second, ORA typically uses only the most significant genes and

discards the others. For instance, the input list of genes from a

microarray experiment is usually obtained using an arbitrary

threshold (e.g., genes with fold-change §2 and/or p-valuesƒ0:05).

With this method, marginally less significant genes (e.g., fold-

change = 1.999 or p-value = 0.051) are missed, resulting in infor-

mation loss. Breitling et al. addressed this problem by proposing an

ORA method for avoiding thresholds. It uses an iterative approach

that adds one gene at a time to find a set of genes for which a

pathway is most significant [14].

Third, by treating each gene equally, ORA assumes that each

gene is independent of the other genes. However, biology is a

complex web of interactions between gene products that constitute

different pathways. One goal of gene expression analysis might be to

gain insights into how interactions between gene products are

manifested as changes in gene expression. A strategy that assumes

the genes are independent is significantly limited in its ability to

provide insights in this regard. Furthermore, assuming independence

between genes amounts to ‘‘competitive null hypothesis’’ testing (see

below), which ignores the correlation structure between genes.

Consequently, the estimated significance of a pathway may be biased

or incorrect.

Fourth, ORA assumes that each pathway is independent of other

pathways, which is erroneous. For instance, GO defines a biological

process as a series of events accomplished by one or more ordered

assemblies of molecular functions (http://www.geneontology.org/

GO.doc.shtml). Another example of dependence between pathways

is the cell cycle pathway in KEGG (http://www.genome.jp/kegg/

pathway/hsa/hsa04110.html), where the presence of a growth

factor activates the MAPK signaling pathway. This, in turn,

activates the cell cycle pathway. No ORA methods account for this

dependence between molecular functions in GO and signaling

pathways in KEGG.

Second Generation: Functional Class Scoring (FCS)
Approaches

The hypothesis of functional class scoring (FCS) is that although

large changes in individual genes can have significant effects on

pathways, weaker but coordinated changes in sets of functionally

related genes (i.e., pathways) can also have significant effects. With

few exceptions [15–17], all FCS methods use a variation of a

general framework that consists of the following three steps [18]

(Figure 1; Table 1): first, a gene-level statistic is computed using the

molecular measurements from an experiment. This involves

computing differential expression of individual genes or proteins.

Statistics currently used at gene-level include correlation of

molecular measurements with phenotype [19], ANOVA [20],

Q-statistic [15], signal-to-noise ratio [21], t-test [20,22], and Z-

score [23]. Although the choice of a gene-level statistic has a

Figure 1. Overview of existing pathway analysis methods using gene expression data as an example. Note that this overview is equally
applicable to molecular measurements using proteomics, and any other high-throughput technologies. The data generated by an experiment using a
high-throughput technology (e.g., microarray, proteomics, metabolomics), along with functional annotations (pathway database) of the
corresponding genome, are input to virtually all pathway analysis methods. While ORA methods require that the input is a list of differentially
expressed genes, FCS methods use the entire data matrix as input. In addition to functional annotations of a genome, PT-based methods utilize the
number and type of interactions between gene products, which may or may not be a part of a pathway database. The result of every pathway
analysis method is a list of significant pathways in the condition under study. DE, differentially expressed.
doi:10.1371/journal.pcbi.1002375.g001
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negligible effect on the identification of significantly enriched gene

sets [18], when there are few biological replicates, a regularized

statistic may be better. Furthermore, untransformed gene-level

statistics can fail to identify pathways with up- and down-regulated

genes. In this case, transformation of gene-level statistics (e.g.,

absolute values, squared values, ranks, etc.) is preferable [18,24].

Second, the gene-level statistics for all genes in a pathway are

aggregated into a single pathway-level statistic. This statistic can be

multivariate [17,25–28] and account for interdependencies among

genes, or it can be univariate [22,24] and disregard interdepen-

dencies among genes. The pathway-level statistics used by current

approaches include the Kolmogorov-Smirnov statistic [21,29],

sum, mean, or median of gene-level statistic [24], the Wilcoxon

rank sum [30], and the maxmean statistic [31]. Irrespective of its

type, the power of a pathway-level statistic can depend on the

proportion of differentially expressed genes in a pathway, the size

of the pathway, and the amount of correlation between genes in

the pathway. Interestingly, although multivariate statistics are

expected to have higher statistical power, univariate statistics show

more power at stringent cutoffs when applied to real biological

data (pƒ0:001), and equal power as multivariate statistics at less

stringent cutoffs (pƒ0:05) [1].

The final step in FCS is assessing the statistical significance of

the pathway-level statistic. When computing statistical signifi-

cance, the null hypothesis tested by current pathway analysis

approaches can be broadly divided into two categories: i)

competitive null hypothesis and ii) self-contained null hypothesis

[3,18,22,31]. A self-contained null hypothesis permutes class labels

(i.e., phenotypes) for each sample and compares the set of genes in

a given pathway with itself, while ignoring the genes that are not in

the pathway. On the other hand, a competitive null hypothesis

permutes gene labels for each pathway, and compares the set of

genes in the pathway with a set of genes that are not in the

pathway. Text S2 has a detailed discussion on the differences

between the two null hypotheses.

FCS methods address three limitations of ORA. First, they do

not require an arbitrary threshold for dividing expression data into

significant and non-significant pools. Rather, FCS methods use all

available molecular measurements for pathway analysis. Second,

while ORA completely ignores molecular measurements when

identifying significant pathways, FCS methods use this information

in order to detect coordinated changes in the expression of genes

in the same pathway. Finally, by considering the coordinated

changes in gene expression, FCS methods account for dependence

between genes in a pathway, which ORA does not.

Limitations. Although FCS is an improvement over ORA

[19,22], it also has several limitations. First, similar to ORA, FCS

analyzes each pathway independently. This is a limitation because

a gene can function in more than one pathway, meaning that

pathways can cross and overlap. Consequently, in an experiment,

while one pathway may be affected in an experiment, one may

observe other pathways being significantly affected due to the set

of overlapping genes. Such a phenomenon is very common when

using the GO terms to define pathways due to the hierarchical

nature of the GO.

Second, many FCS methods use changes in gene expression to

rank genes in a given pathway, and discard the changes from

further analysis. For instance, assume that two genes in a pathway,

A and B, are changing by 2-fold and 20-fold, respectively. As long

as they both have the same respective ranks in comparison with

other genes in the pathway, most FCS methods will treat them

equally, although the gene with the higher fold-change should

probably get more weight. Importantly, however, considering only

the ranks of genes is also advantageous, as it is more robust to

outliers. A notable exception to this scenario is approaches that use

gene-level statistics (e.g., t-statistic) to compute pathway-level

scores. For example, an FCS method that computes a pathway-

level statistic as a sum or mean of the gene-level statistic accounts

for a relative difference in measurements (e.g., Category, SAFE in

Table S2).

Third Generation: Pathway Topology (PT)-Based
Approaches

A large number of publicly available pathway knowledge bases

provide information beyond simple lists of genes for each pathway.

Unlike GO and the Molecular Signatures Database (MSigDB),

these knowledge bases also provide information about gene

products that interact with each other in a given pathway, how

they interact (e.g., activation, inhibition, etc.), and where they

interact (e.g., cytoplasm, nucleus, etc.). These knowledge bases

include KEGG [32], MetaCyc [33], Reactome [34], RegulonDB

[35], STKE (http://stke.sciencemag.org), BioCarta (http://www.

biocarta.com), and PantherDB [36].

ORA and FCS methods consider only the number of genes in a

pathway or gene coexpression to identify significant pathways, and

ignore the additional information available from these knowledge

bases. Hence, even if the pathways are completely redrawn with

new links between the genes, as long as they contain the same set

of genes, ORA and FCS will produce the same results. Pathway

topology (PT)-based methods (Table 1; Table S3) have been

developed to utilize the additional information. PT-based methods

are essentially the same as FCS methods in that they perform the

same three steps as FCS methods. The key difference between the

two is the use of pathway topology to compute gene-level statistics.

Rahnenfuhrer et al. proposed ScorePAGE, which computes

similarity between each pair of genes in a pathway (e.g.,

correlation, covariance, etc.) [37]. The similarity measurement

between each pair of genes is analogous to gene-level statistics in

FCS methods, which is averaged to compute a pathway-level

score. However, instead of giving equal weight to all pairwise

similarities, ScorePAGE divides the pairwise similarities by the

number of reactions needed to connect two genes in a given

pathway (Figure 1). Although the approach is designed to analyze

metabolic pathways, it is theoretically also applicable to signaling

pathways.

A recent impact factor (IF) analytic approach was proposed to

analyze signaling pathways. IF considers the structure and

dynamics of an entire pathway by incorporating a number of

important biological factors, including changes in gene expression,

types of interactions, and the positions of genes in a pathway

[38,39] (Figure 1). Briefly, IF analysis models a signaling pathway

as a graph, where nodes represent genes and edges represent

interactions between them. Further, it defines a gene-level statistic,

called perturbation factor (PF) of a gene, as a sum of its measured

change in expression and a linear function of the perturbation

factors of all genes in a pathway (see Equation 1 in Text S1).

Because the PF of each gene is defined by a linear equation, the

entire pathway is defined as a linear system. Representing a

pathway as a linear system also addresses loops in the pathways

[39]. The IF of a pathway (pathway-level statistic) is defined as a

sum of PF of all genes in a pathway (see Equation 2 in Text S1). IF

analysis was recently improved to address the dominating effect of

change in expression on PF and high false positive rate for a small

list of input genes [40].

FCS methods that use correlations among genes [19,41]

implicitly assume that the underlying network, as defined by the

correlation structure, does not change as the experimental

conditions change. However, this assumption may be inaccurate.
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For example, the correlation structure between ARG2 and other

genes in the urea-cycle pathway changes with a change in

expression of ARG2 [42], suggesting changes in the topology of the

pathway.

Shojaie et al. proposed a method, called NetGSA, that accounts

for the the change in correlation as well as the change in network

structure as experimental conditions change [43]. Their approach,

like IF analysis, models gene expression as a linear function of

other genes in the network. However, it differs from IF in two

aspects. First, it accounts for a gene’s baseline expression by

representing it as a latent variable in the model. Second, it requires

that the pathways be represented as directed acyclic graphs

(DAGs). If a pathway contains cycles, NetGSA requires additional

latent variables affecting the nodes in the cycle. In contrast, IF

analysis does not impose any constraint on the structure of a

pathway [39].

Limitations. Although PT-based methods are difficult to

generalize, they have several common limitations. One obvious

problem is that true pathway topology is dependent on the type of

cell due to cell-specific gene expression profiles and condition

being studied. However, this information is rarely available and is

fragmented in knowledge bases, even if it is fully understood [44].

As annotations improve, these approaches are expected to become

more useful. Other limitations of PT-based methods include the

inability to model dynamic states of a system and the inability to

consider interactions between pathways due to weak inter-

pathway links to account for interdependence between pathways.

These limitations are discussed in detail in the Outstanding

Challenges section below.

Outstanding Challenges in Pathway Analysis

The current challenges in pathway analysis can be divided into

two broad categories: i) annotation challenges and ii) methodo-

logical challenges. We believe that development of the next

generation of pathway analytic approaches will require improve-

ment of the existing annotations. It is necessary to create accurate,

high resolution knowledge bases with detailed condition-, tissue-,

and cell-specific functions of each gene. These knowledge bases

will allow investigators to model an organism’s biology as a

dynamic system, and will help predict changes in the system due to

factors such as mutations or environmental changes.

Annotation Challenges
Low resolution knowledge bases. Recent technological

advances in genomics and proteomics are generating data at

unprecedented high resolution. As a result, there is a need for

correspondingly high resolution annotation knowledge bases. For

instance, using RNA-seq, more than 90% of the human genome is

estimated to be alternatively spliced. Multiple transcripts from the

same gene may have related, distinct, or even opposing functions

[45]. Similarly, genome-wide association studies (GWASs) have

identified a large number of SNPs that may be involved in

different conditions and diseases. However, current knowledge

bases only specify which genes are active in a given pathway. It is

essential that they also begin specifying other information, such as

transcripts that are active in a given pathway or how a given SNP

affects a pathway (Figure 2). To the best of our knowledge, because

of these low resolution knowledge bases, every available pathway

analysis tool first maps the input to a non-redundant namespace,

typically an Entrez Gene ID [46]. Arguably, this type of mapping

is advantageous [47], although it can be non-trivial [48] and

dynamic [49], as it allows the existing pathway analysis

approaches to be independent of the technology used in the

experiment. However, mapping in this way also results in the loss

of important information that may have been provided because a

specific technology was used. For instance, XRN2a, a variant of

gene XRN2, is expressed in several human tissues, whereas another

variant of the same gene, XRN2b, is mainly expressed in blood

leukocytes [50]. Although RNA-seq can quantify expression of

both variants, mapping both transcripts to a single gene causes loss

of tissue-specific information, and possibly even condition-specific

information.

Therefore, before pathway analysis can exploit current and

future technological advances in biotechnology, it is critically

important to annotate exact transcripts and SNPs that participate

in a given pathway. While new approaches are being developed in

this regard, they may not yet be adequate. For example, Braun et

al. proposed a method for analyzing SNP data from a GWAS [51].

However, this approach still relies on mapping multiple SNPs to a

single gene, followed by gene-to-pathway mapping [51]. Hence,

the limited applicability of today’s knowledge bases to emerging

technologies shows the need for increased resolution of knowledge

bases.

Incomplete and inaccurate annotations. Despite the

enormous number of annotations available in the public

domain, a surprisingly large number of genes are still not

annotated. For instance, the November 2009 release of GO

contained entries for 18,587 human genes annotated with at least

one GO term (Figure 3). Many of the genes are hypothetical,

predicted, or pseudogenes. For example, although the number of

protein-coding genes in the human genome is estimated to be

between 20,000 and 25,000 [52], according to National Center for

Biotechnology Information (NCBI) Entrez Gene, there are 45,283

human genes, of which 14,162 are pseudogenes (Table S4). One

could argue that the pseudogenes should not be included when

evaluating functional annotation coverage. However, pseudogene-

derived small interfering RNAs have been shown to regulate gene

expression in mouse oocytes [53]. Furthermore, GO provides

annotations for 271 pseudogenes. A widely used DNA microarray,

Affymetrix HG U133 plus 2.0, contains 1,026 probe sets that

correspond to 823 pseudogenes. Based on these examples, we

believe that the pseudogenes should be included in the count when

estimating annotation coverage for the human genome.

In addition to incomplete annotations, many of the existing

annotations are of low quality and may be inaccurate. For

instance, .95% of the annotations in the October 2007 release of

GO had the evidence code ‘‘inferred from electronic annotations

(IEA)’’. These annotations are the only ones in GO that are not

curated manually [54]. Annotations inferred from indirect

evidence are considered to be of lower quality than those derived

from direct experimental evidence, although this opinion has not

been shown robustly [54]. If the annotations with IEA code are

removed, the number of genes with good quality annotations in

the November 2009 release of human GO annotations is reduced

from 18,587 to 11,890 (Figure 3).

It is very likely that the reduced number of annotations and

annotated genes since January 2003 is an indicator of improving

quality. This is due in part to the fact that the number of genes in a

genome are continuously being adjusted and the functional

annotation algorithms are being improved. Indeed, the number

of non-IEA annotations is continuously increasing (Figure 3).

However, the rate of increase for non-IEA annotations is very slow

(approximately 2,000 genes annotated in 7 years; Figure 3).

Manual curation of the entire genome is expected to take a very

long time (,13–25 years) [55]. In order to exponentially increase

coverage, resolution, and accuracy of annotations, we believe that

the entire research community must participate in the curation
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Figure 2. Overview of low resolution, missing, and incomplete information. Green arrows represent abundantly available information, and
red arrows represent missing and/or incomplete information. The ultimate goal of pathway analysis is to analyze a biological system as a large, single
network. However, the links between smaller individual pathways are not yet well known. Furthermore, the effects of a SNP on a given pathway are
also missing from current knowledge bases. While some pathways are known to be related to a few diseases, it is not clear whether the changes in
pathways are the cause for those diseases or the downstream effects of the diseases.
doi:10.1371/journal.pcbi.1002375.g002

Figure 3. Number of GO-annotated genes (left panel) and number of GO annotations (right panel) for human from January 2003 to
November 2009. As the estimated number of known genes in the human genome is adjusted (between January 2003 and December 2003) and
annotation practices are modified (between December 2004 and December 2005, and between October 2008 and November 2009), one can argue
that, although the number of annotated genes and the annotations are decreasing (which is mainly due to the adjusted number of genes in the
human genome and changes in the annotation process), the quality of annotations is improving, as demonstrated by the steady increase in non-IEA
annotations and the number of genes with non-IEA annotations. However, the increase in the number of genes with non-IEA annotations is very
slow. In almost 7 years, between January 2003 and November 2009, only 2,039 new genes received non-IEA annotations. At the same time, the
number of non-IEA annotations increased from 35,925 to 65,741, indicating a strong research bias for a small number of genes.
doi:10.1371/journal.pcbi.1002375.g003
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process. One approach to facilitate participation of a large number

of researchers is to adopt a standard annotation format similar to

Minimum Information About a Microarray Experiment (MIAME)

[56]. The majority of journals now require that data from DNA

microarray experiments and other high-throughput experiments

be deposited in MIAME-compliant format prior to publication.

Since its introduction in 2002, the Gene Expression Omnibus

(GEO) [57] database at NCBI has collected 637,643 samples from

25,783 experiments on 9,385 platforms (data current as of

October 2011). Similarly, it may also be beneficial to require

deposition of functional study data in standard format in public

repositories. A format for functional annotation can be designed or

adopted from the existing formats (e.g., BioPAX, SBML). Such a

format can allow researchers to specify an experimentally

confirmed role of a specific transcript or a SNP in a pathway

along with experimental and biological conditions. Such a

repository would improve the state of functional annotations in

public domains, and also enable development of the next

generation of large-scale pathway analysis tools.

Missing condition- and cell-specific information. Most

pathway knowledge bases are built by curating experiments

performed in different cell types at different time points under

different conditions. However, these details are typically not available

in the knowledge bases. One effect of this omission is that multiple

independent genes are annotated to participate in the same

interaction in a pathway. This effect is so widespread that many

pathway knowledge bases represent a set of distinct genes as a single

node in a pathway, and is part of the standard BioPAX format.

An example of this problem is the Wnt/beta-catenin pathway in

STKE (http://stke.sciencemag.org/cgi/cm/stkecm;CMC_6032; free

registration is required to view this website), where the node labeled

‘‘Genes’’ represents 19 genes directly targeted by Wnt in different

organisms (Xenopus [58] and human [59]) in different cells and tissues

(colon carcinoma cells [60] and epithelial cells [61]). These non-specific

genes introduce bias for these pathways in all existing analysis

approaches. For instance, any ORA method will assign higher

significance (typically an order of magnitude lower p-value) to a

pathway with more genes. Similarly, more genes in a pathway also

increase the probability of a higher pathway-level statistic in FCS

approaches, yielding higher significance for a given pathway.

However, this contextual information is typically not available

from most of the existing knowledge bases. A standard functional

annotation format discussed above would make this information

available to curators and developers. For instance, the recently

proposed Biological Connection Markup Language (BCML)

allows pathway representation to specify the cell or organism in

which each pathway interaction occurs [62]. Furthermore, BCML

can generate cell-, condition-, or organism-specific pathways based

on user-defined query criteria, which in turn can be used for

targeted analysis.

Existing knowledge bases do not describe the effects of an

abnormal condition on a pathway (Figure 2). For example, it is not

clear how the Alzheimer’s disease pathway in KEGG differs from

a normal pathway (http://www.genome.jp/kegg/pathway/hsa/

hsa05010.html), nor it is clear which set of interactions leads to

Alzheimer’s disease. We are now beginning to understand that

context plays an important role in pathway interactions.

Information about how cell and tissue type, age, and environ-

mental exposures affect pathway interactions will add complexity

that is currently lacking.

Methodological Challenges
Benchmark data sets for comparing different

methods. Although multivariate pathway-level statistics

outperform univariate statistics on simulated data, univariate

statistics are equal to or better than multivariate statistics on real

biological data [1]. This fact raises a question of how to assess

performance of pathway analysis methods. One way to address the

question is to compare different methods against a set of

benchmark data sets.

Using simulated data [1,18] as a benchmark has the advantage

of comparing sensitivity and specificity of different methods.

However, biology is more complicated than simulated data.

Biological data are often affected by confounding factors such as

absence of a pure division into classes, presence of outliers,

experimental or technical ‘‘hidden’’ factors, etc. Therefore, it is

desirable to use real biological data as benchmark data sets.

A number of well-studied biological data sets can be used for

this purpose [21,29,63–65]. However, when using real biological

data, the actual biology is never fully known. Furthermore,

different definitions of the same pathway in different knowledge

bases can affect performance assessment in terms of power, and

the number of true positives and true negatives. For instance, GO

defines different pathways for apoptosis in different cells (e.g.,

cardiac muscle cell apoptosis, B cell apoptosis, T cell apoptosis). It

further distinguishes between induction and regulation of

apoptosis. Alternatively, KEGG defines a single signaling pathway

for apoptosis, and does not distinguish between induction and

regulation. Hence, an approach using KEGG would identify a

single pathway as significant, whereas GO could identify multiple

pathways, and/or specific aspects of a single apoptosis pathway.

Inability to model and analyze dynamic response. While

information missing from pathway knowledge bases limits analysis

from a systems biology perspective, no existing approach can

collectively model and analyze high-throughput data as a single

dynamic system. Current approaches are designed to analyze a

snapshot of a biological system by assuming that each pathway is

independent of the others at a given time. A typical approach for

analyzing dynamic response at the pathway level is to measure

expression changes at multiple time points, and analyze each time

point individually to see which pathways are significant at each

time point [66,67]. These approaches implicitly also assume that

pathways at different time points are independent of each other.

The lack of a model that accounts for dependence among

pathways at different time points limits our ability to observe

changes at a pathway level in a biological system.

For example, existing approaches for pathway analysis of gene

expression profiles obtained from transplanted organ biopsies on

day 1 would identify antigen processing and presentation pathway as

significant, but probably fail to identify other downstream

pathways, such as cytokine-cytokine receptor signaling and T cell receptor

signaling. This failure is due to the fact that existing approaches do

not account for inter-pathway dependence, such as activation of

antigen processing and presentation pathway leading to activation of

other immune pathways. The lack of methods that analyze

pathways as a dynamic system is, in part, due to limitations of

current molecular measurement technologies. These technologies

can only quantify a snapshot of a biological system because (i)

they are unable to determine protein states in a high-throughput

fashion or are severely restricted in this regard; and (ii) they are

unable to detect signals that propagate without affecting gene

expression.

Topology-based analysis approaches can potentially model and

analyze dynamic responses. For example, IF analysis models each

pathway as a linear system and propagates changes in gene

expression as perturbations in the system via interactions between

gene products [38–40,43]. However, these approaches also assume

that the expression levels of all genes, measured at a specific time
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point, are constant and never change. This assumption almost

never holds, as there are positive and negative feedback loops in

pathways that continuously regulate expression of different genes.

Furthermore, the assumptions made to propagate signals through

the biological system and estimate expression changes of the other

genes/proteins on each pathway are very gross, although they

have been shown to provide useful insights.
Inability to model effects of an external stimuli. Gene

set–based approaches often only consider genes and their

products, and completely ignore the effects of other molecules

participating in a pathway, such as the rate limiting step of a multi-

step pathway. For instance, the amount/strength of Ca2+ causes

different transcription factors to be activated [68,69]. However,

this information is usually not available, due to lack of

experimental data, although efforts are being made to make

these types of data available in the public domain [70]. None of

the existing approaches fully incorporate this information in their

models, although PT-based analysis methods potentially have the

ability to consider some of them.

Conclusion

In the last decade, pathway analysis has become the first choice

for extracting and explaining the underlying biology for high-

throughput molecular measurements. Today, virtually every

bioinformatics study looks for statistically significant pathways as

either biological interpretation or validation of computationally

derived results. This paper discusses the evolution of pathway

analysis methods of high-throughput molecular measurements in

the last decade, distinctly divided into three generations based on

the type of analysis they performed. Although widely adopted, the

first generation of pathway analysis methods, ORA methods,

decouple molecular measurements from functional analysis and

assume that genes and pathways are independent of each other.

The second-generation FCS methods address these limitations.

PT-based methods further improve FCS methods by considering

the number and type of interactions between genes, which FCS

methods ignore.

However, despite these efforts, there are outstanding annotation

and methodological challenges. First, low resolution knowledge

bases, missing condition- and cell-specific information, and

incomplete annotations restrict development of the next-genera-

tion pathway analysis methods. Second, the inability to integrate

the dynamic nature of a biological system in analysis limits the

utility of existing methods. However, despite these hurdles, as the

number and type of functional annotations increase, coupled with

technological advances and analysis methods that provide better

guidance for strategic planning for subsequent biological experi-

ments, the utility of pathway analysis and confidence in results will

likely improve. The community must address these challenges

collectively to move pathway analysis into the next generation that

is able to utilize the new high-throughput technologies in order to

better understand large biological systems and to increase the

specificity, sensitivity, and relevance of pathway analysis, and

consequently, its utility.

Supporting Information

Text S1 Description of the linear model used by IF analysis.

(PDF)

Text S2 Feature comparison of a few existing pathway analysis

tools in each generation.

(PDF)

Table S1 Comparison of 11 ORA pathway analysis tools and

analysis features available in them.

(PDF)

Table S2 Comparison of seven FCS pathway analysis tools and

analysis features available in them.

(PDF)

Table S3 Comparison of three PT-based pathway analysis tools

and analysis features available in them.

(PDF)

Table S4 NCBI Entrez Gene statistics for the types of genes

annotated for humans.

(PDF)

Acknowledgments

We thank Valmik Desai, Richard Hayden Jones, Nigam Shah, and Shai

Shen-Orr for their useful comments.

References

1. Glazko G, Emmert-Streib F (2009) Unite and conquer: univariate and

multivariate approaches for finding differentially expressed gene sets. Bioinfor-

matics 25: 2348–2354.

2. Green ML, Karp PD (2006) The outcomes of pathway database computations

depend on pathway ontology. Nucleic Acids Res 34: 3687–3697.

3. Goeman JJ, Buhlmann P (2007) Analyzing gene expression data in terms of gene

sets: methodological issues. Bioinformatics 23: 980–987.
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