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Number of deaths for leading
causes of death in US (CDC) (2011 ata)

1. Heart disease: 596,339

2. Cancer: 575,313

3. Chronic lower respiratory diseases: 143,382

4. Stroke (cerebrovascular diseases): 128,931

5. Accidents (unintentional injuries): 122,777

6. Alzheimer's disease: 84,691

/. Diabetes: 73,282

8. Influenza and Pneumonia: 53,667

9. Nephritis, nephrotic syndrome, and nephrosis: 45,731
10. Intentional self-harm (suicide): 38,285



Cancer: Number One Disease-
Related Killer of Americans

Although extraordinary advances in cancer research have
deepened our understanding of how cancer develops, grows,
and threatens the lives of millions, it is projected that 580,350
Americans will die from one of the more than 200 types of
cancer in 2013. Moreover, because more than 75 percent of
cancer diagnoses occur in those aged 55 and older and this
segment of the population is increasing in size, we face a
future where the number of cancer-related deaths will increase
dramatically. As a result, cancer is predicted to soon become
the number one disease-related killer of Americans. This trend
is being mirrored globally, and it is estimated that in 2030,
more than 13 million people worldwide will lose their lives to
cancer.

(From: AACR Cancer Progress Report 2013)



Cancer

« Disease of Genome

— Mutations in DNA (somatic mutations, copy number
variations, translocations etc)

— Alterations in Epigenetics (methylation patterns,
epigenetics etc)

— Alterations in RNA (mRNA expression, miRNA
expression, other non-coding RNA expressions etc)

— Alterations in Protein (protein expression, post-
translational modification etc)

» Disease of Microenvironment
— Signaling & Interactions from microenvironment



Multiple Level of Aberrations in Cancer
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Drivers and Passengers

e Drivers
— Key genes when altered / mutated, can promote or “drive” tumorigenesis, and
provide survival advantages to the cancer cell
— Atypical tumor contains two to eight of these “driver gene” mutations. (Vogelstein
et al Science 2013)

— Driver genes can be classified into 12 signaling pathways that regulate three core
cellular processes: cell fate, cell survival, and genome maintenance. (Vogelstein
et al Science 2013)

« Passengers

— Passenger mutations are “by-stander” alterations that happen to be altered in the
primary cells but do not provide survival advantage of cancer.

— These mutations represent random somatic events (that is, changes that
occurred before a clonal expansion and are simply carried along despite
conferring no selective advantage).

« CHALLENGE: How to distinguish “drivers” from “passengers”



Oncogenes addiction

* There are numerous examples which suggest that
some cancers are not only initiated by a particular
oncogene, but are also dependent upon that
oncogene for tumor maintenance.

» Targeted cancer therapies have exploited this
“oncogene addiction” concept; leading to several
successful genotype-directed clinical applications of
targeted therapies have been demonstrated

— BCR-ABL in Chronic Myeloid Leukemia

— EGFR in non small cell lung cancer (NSCLC)
— EML-ALK4 in NSCLC

— BRAFV600E jn metastatic melanoma

* The clinical paradigm until now is based on a simple
binary correlation between a mutated cancer gene
and response to a given therapy.



One Example: BRAF mutation in Melanoma

Mutations of the BRAF gene
in human cancer

(Nature 2002, 417:949-954)
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Table 1 BRAF mutations in human cancer

BRAF mutations Cancer cell lines Primary tumours
M @) (3) (4) (5) 6) 7 8) (1) @) (3) (4) (5 (6)

Nucleotide Aminoacid Mel. Colo.ca. Glioma Lungca. Sarcoma Breast Ovarian Other Mel. STC Mel. Colo.ca. Ovarian* Sarcoma Othert Total
G1388A G463E 1 1
G1388T G463V 1 1
G1394C G465A 1 1
G139%4A G465E 1 1
G1394T G465V 1 1
G1403C G468A 2 2
G1403A G468E 1 1
G1753A E585K 1 1
T1782G F594L 1 1
G1783C G595R 1 1
C1786G L596V 1 1
T1787G L596R 1 1
T1796A V599E 19 5 4 5 1 1 1 5 2 3 1 0 57
TG1796-97AT V599D 1 1

Total 20 7 4 4 5 1 1 1 12 6 4 5 1 0 71
No. samples screened 34 40 38 131 59 45 26 172 15 9 33 35 182 104 923
Per cent 59% 18% 1% 3% 9% 2% 4% 0.6% 80% 67% 12% 14% 0.5% 0% 8%

Amino acid residues are grouped in blocks. Three further BRAF coding sequence variants were identified (G2041A R681Q in the HEC1A endometrial cancer cell line, T974C I1325T in the ZR-75-30
breast cancer cell line, and C2180T A727V in the H33AJ-JA1 T-ALL cell line). These were not present in 341 control DNAs. Lane numbers (in parentheses) are provided for convenience. Mel.,

melanoma; Colo. ca., colorectal cancer; Mel. STC, melanoma short-term culture.
*Four out of ten LMP (low malignant potential); 1 out of 25 malignant epithelial.

tGlioma (n = 15), breast cancer (n = 33), prostate cancer (n = 23), HNSCC (head and neck squamous cell carcinoma) (n = 19), lung cancer (n = 14).
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Targeting mutated genes with Targeted Therapy
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Targeted therapy
inhibits oncogenic
pathway

Activation of
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oncogene

secondary
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reactivate
oncogenic
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Disease
Progression

Disease
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Disease
Response

Pre-treatment Post-treatment Relapse (acquired resistance)
(38 yo melanoma patient 15 weeks on PLX4032 (BRAFi) 23 weeks on PLX4032 (BRAFi)
with BRAF mut) (Patient Image From: Wagle et al JCO 2011)
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Combined BRAF and MEK Inhibition
in Melanoma with BRAF V600 Mutations
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Progression Free Survival

ABSTRACT

BACKGROUND
Resistance to therapy with BRAF kinase inhibitors is associated with reactivation of 1.0
the mitogen-activated protein kinase (MAPK) pathway. To address this problem, we :
conducted a phase 1 and 2 trial of combined treatment with dabrafenib, a selective
BRAF inhibitor, and trametinib, a selective MAPK kinase (MEK) inhibitor.

Events Median Hazard Ratio (95% Cl) P Value
no. (%) mo
Mono 47(87) 58
150/1 39(72) 9.2 0.56 (0.37-0.87) 0.006
31(57) 9.4 0.39 (0.25-0.62) <0.001

METHODS

In this open-label study involving 247 patients with metastatic melanoma and BRAF
V600 mutations, we evaluated the pharmacokinetic activity and safety of oral da-
brafenib (75 or 150 mg twice daily) and trametinib (1, 1.5, or 2 mg daily) in &5
patients and then randomly assigned 162 patients to receive combination therapy
with dabrafenib (150 mg) plus trametinib (1 or 2 mg) or dabrafenib monotherapy.
The primary end points were the incidence of cutaneous squamous-cell carcinoma,
survival free of melanoma progression, and response. Secondary end points were
overall survival and pharmacokinetic activity.
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RESULTS

Dose-limiting toxic effects were infrequently observed in patients receiving combina-
tion therapy with 150 mg of dabrafenib and 2 mg of trametinib (combination 150/2).
Cutaneous squamous-cell carcinoma was seen in 7% of patients receiving combina-
tion 150/2 and in 19% receiving monotherapy (P=0.09), whereas pyrexia was more
common in the combination 150/2 group than in the monotherapy group (71%
vs. 26%). Median progression-free survival in the combination 150/2 group was
9.4 months, as compared with 5.8 months in the monotherapy group (hazard ratio
for progression or death, 0.39; 95% confidence interval, 0.25 to 0.62; P<0.001). The 0.0 T T T T T 1
rate of complete or partial response with combination 150/2 therapy was 76%, as 0 3 6 9 12 15 18
compared with 54% with monotherapy (P=0.03).

0.2-{ — Combination 150/2
— Combination 150/1
— Monotherapy

Probability of Progression-free Survival

Months since Randomization

CONCLUSIONS

Dabrafenib and trametinib were safely combined at full monotherapy doses. The rate
of pyrexia was increased with combination therapy, whereas the rate of proliferative
skin lesions was nonsignificantly reduced. Progression-free survival was significantly
improved. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01072175.)
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Patterns of somatic mutation in human
cancer genomes

Christopher Greenman’, Philip Stephensl, Raffaella Smith!, Gillian L. Dalglieshl, Christopher Hunter’,

Graham Bignell!, Helen Davies', Jon Teague', Adam Butler!, Claire Stevens', Sarah Edkins', Sarah O’'Meara’,
Imre Vastrik? Esther E. Schmidt?, Tim Avis', Syd Barthorpe', Gurpreet Bhamra', Gemma Buck’,

Bhudipa Choudhury’, Jody Clements’, Jennifer Cole’, Ed Dicks', Simon Forbes', Kris Gray', Kelly Halliday’,
Rachel Harrison', Katy Hills', Jon Hinton', Andy Jenkinson', David Jones', Andy Menzies', Tatiana Mironenko’,
Janet Perry’, Keiran Raine’, Dave Richardson’, Rebecca Shepherd’, Alexandra Small’, Calli Tofts’, Jennifer Varian',
Tony Webb!, Sofie West', Sara Widaa, Andy Yates', Daniel P. Cahill®’, David N. Louis’, Peter Goldstraw?,
Andrew G. Nicholson*, Francis Brasseur’, Leendert Looijenga®, Barbara L. Weber’, Yoke-Eng Chiew?,

Anna deFazio®, Mel F. Greaves®, Anthony R. Green'®, Peter Campbell', Ewan Birney?, Douglas F. Easton'’,
Georgia Chenevix-Trench'?, Min-Han Tan'?, Sok Kean Khoo'?, Bin Tean Teh'?, Siu Tsan Yuen'4, Suet Yi Leung'?,
Richard Wooster', P. Andrew Futreal' & Michael R. Stratton"’

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome
sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of
many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA
corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation
in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular
origins. Most somatic mutations are likely to be ‘passengers’ that do not contribute to oncogenesis. However, there was
evidence for ‘driver’ mutations contributing to the development of the cancers studied in approximately 120 genes.
Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger
repertoire of cancer genes than previously anticipated.



Initial Large-Scale Cancer Genome Sequencing Efforts
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The Consensus Coding Sequences of
Human Breast and Colorectal Cancers

Tobias Sjoblom,** Sian Jones,** Laura D. Wood,** D. Williams Parsons,* Jimmy Lin,*

Thomas D. Barber,’t Diana Mandelker,* Rebecca ]. Leary, Janine Ptak,* Natalie Silliman,*
Steve Szabo,! Phillip Buckhaults,? Christopher Farrell,> Paul Meeh,? Sanford D. Markowitz,>
Joseph Willis,* Dawn Dawson,” James K. V. Willson,® Adi F. Gazdar,® James Hartigan,” Leo Wu,®
Changsheng Liu,® Giovanni Parmigiani,” Ben Ho Park,’® Kurtis E. Bachman,*?

Nickolas Papadopoulos,” Bert Vogelstein,'t Kenneth W. Kinzler,* Victor E. Velculescut

The elucidation of the human genome sequence has made it possible to identify genetic alterations
in cancers in unprecedented detail. To begin a systematic analysis of such alterations, we
determined the sequence of well-annotated human protein-coding genes in two common tumor
types. Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual
tumors accumulate an average of ~90 mutant genes but that only a subset of these contribute to
the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes
(average of 11 per tumor) that were mutated at significant frequency. The vast majority of these
genes were not known to be genetically altered in tumors and are predicted to affect a wide range
of cellular functions, including transcription, adhesion, and invasion. These data define the genetic
landscape of two human cancer types, provide new targets for diagnostic and therapeutic
intervention, and open fertile avenues for basic research in tumor biology.

(Science 2006)
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Initial Large-Scale Cancer Genome Sequencing Efforts
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The Genomic Landscapes of Human
Breast and Colorectal Cancers

Laura D. Wood,™* D. Williams Parsons,** Sidn Jones,* Jimmy Lin,** Tobias Sjoblom,**t
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Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor
genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from
11 breast and 11 colorectal tumors and determined the sequences of the genes in the
Reference Sequence database in these samples. Based on analysis of exons representing
20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast
and colorectal cancers are composed of a handful of commonly mutated gene “mountains”
and a much larger number of gene “hills” that are mutated at low frequency. We describe
statistical and bioinformatic tools that may help identify mutations with a role in
tumorigenesis. These results have implications for understanding the nature and heterogeneity of
human cancers and for using personal genomics for tumor diagnosis and therapy.



Initial Large-Scale Cancer Genome Sequencing Efforts

® Colorectal cancer 1
® Colorectal cancer 2
Both

Table 1. Summary of somatic mutations. UTR, untranslated region. ND, not determined because synonymous mutations were not evaluated in the
RefSeq genes analyzed in (5).

Coding changes Noncoding

changes Total
ice si mutations

Tumor type  Screen Gene set N;u:::d Missense Nonsense Insertion Deletion Duplication Synonymous ST:(;:;te
Discove This study 325 237 14 0 8 0 93 12 364
Colorectal Y oA RefSeq 848 722 48 4 27 18 ND 30 942
cancers Validation This study 88 81 9 1 2 2 30 6 131
All RefSeq 183 197 34 4 14 5 ND 15 299
Discovery  This study 460 304 26 2 28 1 131 14 506
Breast All RefSeq 1137 909 64 5 78 3 ND 53 1243

cancers Validation This study 62 52 3 0 3 0 19 2 79

All RefSeq 167 153 11 2 15 2 ND 7 209




Pathway-centric analysis of Cancer Genome
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\ Regardless of whether this pathway-centric

o L interpretation is correct, it is clear that the “easy”
part of future cancer genome research will be
the identification of genetic alterations. The vast
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Fig. 2. PI3K pathway mutations in breast and colorectal cancers. The identities and relationships of
genes that function in PI3K signaling are indicated. Circled genes have somatic mutations in colorectal
(red) and breast (blue) cancers. The number of tumors with somatic mutations in each mutated protein
is indicated by the number adjacent to the circle. Asterisks indicate proteins with mutated isoforms
that may play similar roles in the cell. These include insulin receptor substrates IRS2 and IRS4;
phosphatidylinositol 3-kinase regulatory subunits PIK3R1, PIK3R4, and PIK3R5; and NF-xB regulators
NFKB1, NFKBIA, and NFKBIE.



The Cancer Genome Atlas Project

* The Cancer Genome Atlas (TCGA) began as
a three-year pilot in 2006 with an investment
of $50 million each from the National Cancer

nstitute (NCI) and National Human Genome
Research Institute (NHGRI).

* Pilot Project: Comprehensive Characterized
of three tumor types: Glioblastoma (GBM),
Ovarian and lung cancers (> 200 samples)

« 2009 expand to 20 common tumor types




BOX 1 TCGA: MISSION AND STRATEGY

Important information about the biological relevance of the molecular changes in cancer
can be obtained through combined analysis of multiple different types of data.

For that reason, TCGA's principal aims are to generate, quality control, merge, analyze
and interpret molecular profiles at the DNA, RNA, protein and epigenetic levels for
hundreds of clinical tumors representing various tumor types and their subtypes. Cases
that meet quality assurance specifications are characterized using technologies that
assess the sequence of the exome, copy number variation (measured by SNP arrays), DNA
methylation, mRNA expression and sequence, microRNA expression and transcript splice
variation. Additional platforms applied to a subset of the tumors, including whole-genome
sequencing and RPPAs, provide additional layers of data to complement the core genomic
data sets and clinical data. By the end of 2015, the TCGA Research Network plans to have
achieved the ambitious goal of analyzing the genomic, epigenomic and gene expression
profiles of more than 10,000 specimens from more than 25 different tumor types.

TCGA has other, complementary aims as well: to promote the development and
application of new technologies, to detect cancer-specific molecular alterations, to make
data and results freely available to the scientific community, to develop tools and standard
operating procedures that can serve other large-scale profiling projects and to build
cadres of individuals (including experimentalists, computational biologists, statistical
analysts, computer scientists and administrative staff) with the expertise to carry out such
large-scale, team science projects. As of 24 July 2013, TCGA had mapped molecular
patterns across 7,992 total cases representing 27 tumor types. The data, along with tools
for exploring them, are publicly available at http://www.cancergenome.nih.gov/. Eight
‘marker papers’ (comprehensive initial publications on each of the tumor types) have been
published so far®-12.14.27,



The Cancer Genome Atlas (TCGA)

THE CANCER GENOME ATLAS (TCGA) BY THE NUMBERS

TCGA produced over TCGA data describes ...including
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...based on paired tumor and normal tissue sets
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(Hutter & Zenklusen (2018) Cell)




Cancer type

Prevalence

Key findings

Breast lobular carcinoma 203 FOXA1 elevated in lobular carcinoma, GATA3 in ductal carcinoma; lobular enriched for PTEN loss and Akt activation
3,327,552 Four distinct subt, 3 i i 3 i ions: 3
ypes: basal, Her2, luminal A, and luminal B; most common driver mutations: TP53, PIK3CA, GATA3; basal subtype
Breast ductal carcinoma 784 similar to serous ovarian cancer
Highly heterogeneous with 26% driven by unknown alterations; ETS gene fusions or mutations in SPOP, FOXA1, or IDH1 define seven
Prostate cancer 3,085,209 333 subtypes; actionable lesions in PI3K, MAPK, and DNA repair pathways
Colorectal 1317247 276 Colon and rectal cancers have similar genomic profiles; hypermutated subtype associated with favorable prognosis; new potential drivers:
adenocarcinoma R ARID1A, SOX9, FAM123B/WTX
c Established four subtypes: BRAF mutant, RAS mutant, NF1 mutant, and triple wild-type based on driver mutations; higher levels of im-
IR Tl = mune lymphocyte infiltration correlated with better survival
Thyroid carcinoma 726,646 496 Majority driven by RAS or BRAFVB00E mutations
Endomontal carcinonts 373 Classified endo_metrial cancers into four categories: POLE ultramutated, MSI (microsatellite instability) hypermutated, copy-number low,
710,228 copy-number high
Uterine carcinosarcoma 57 Strong and varied degree of epithelial h | 1, TP53 mutations in 91% of samples; PI3K alterations in half
Invasive urothelial 696,440 131 Increased risk associated with smoking; frequently mutated; TP53 inactivated in 76% of tumors, ERBB2 (HER2), genes in the RTK/RAS
bladder carcinoma ! pathways altered in 44%
Lung adenocarcinoma 230 High mutation burden; 76% have activation of receptor tyrosine kinase pathways
Lung squamous R2fess 178 High average number of mutations and copy-number aberrations; almost all have mutation in TP53; many have inactivating mutations
cell carcinoma in HLA-A that may aid immune evasion
Clear cell renal 446 Commonly mutated genes: VHL, SED2, and the PIBK/AKT/mTOR pathway; metabolic shift similar to the “Warburg effect” correlates with
cell carcinoma a poor prognosis
Kidney papillary 483,225 161 81% of type 1 tumors had MET alteration; type 2 tumors were heterogeneous, with alterations to CDKN2A, SETD2, TFE3, or increased
carcinoma b expression of NRF2-ARE pathway; loss of CDKN2A expression and CpG island methylation phenotype associated with poor outcome
Chromophobe renal 66 Extremely low mutation burden; metabolic shift distinct from the “Warburg effect” shift in clear cell carcinoma; TP53 and PTEN were
cell carcinoma frequently mutated; TERT gene promoter was frequently altered
Identification of HPV-negative, endometrial-like cancers with mutations in KRAS, ARID1A, and PTEN; amplification of CD274 and
Cervical cancer 256,078 228 PDCD1LG2; frequent alterations in MED1, ERBB3, CASP8, HLA-A, and TGFBR2 and fusions involving IncRNA BCAR4; nearly three-
quarters had alterations in either or both of the PIBK/MAPK and TGF-beta pathways
Testicular germ 251,104 150
cell cancer
Ovarian serous 222,060 489 Mutations: TP53 (in 96%), BRCA1 and BRCA2 (in 21%) and are associated with more favorable outcomes
adenocarcinoma
Glioblastoma 206 GBM subtypes Classical, Mesenchymal, and Proneural are defined by EGFR, NF1, and PDGFRA/IDH1 mutations, respectively; over 40%
multiforme 623 have mutations in chromatin-modifiers; frequently mutated: TP53, PIK3R1, PIK3CA, IDH1, PTEN, RB1, LZTR1
162341
Lower-grade glioma 203 Defmefi three subtypes correlating with patient outcomes: IDH1 mutant with 1p/19q deletion, IDH mutant without 1p/19q deletion, and
IDH wild-type
Stomach -~ . - . - o - - . - -
Eanocarchne 95,764 295 Identified four subytpes characterized by EBV infection, microsatellite instability, genomic stability, and chromosomal instability
Liver hepatocellular 363 TERT promoter mutations in 44%; TP53 commonly mutated or under-expressed; CTNNBB1 significantly mutated; many tumors had high
carcinoma 66,771 levels of lymphocyte infiltration or (] immune checkpoint genes
Cholangiocarcinoma 38 Low expression of CDKN2, BAP1, and ARID1 genes and overexpression of FGFR2 and IDH1/2 genes; four subtypes defined
Pancreatic ductal . . . L S
e 64,668 150 KRAS mutations present in 93% of tumors; mutations in RREB1 or other members of RAS-MAPK signaling pathway
. Squamous cell carcinomas had frequent amplifications of CCND1, SOX2, and TP63; adenocarcinomas had frequent amplifications in
Esophageal carcinoma 45,547 164 ERBB2, VEGFA, GATA4, and GATAG
Low mutation burden—only 13 coding mutations on average per tumor; classified driver events into nine categories including transcription
Acute myeloid leuksmia 200 factor fusions, histone modifier mutations, and spliceosome mutations
Head and neck squamous 279 HPV-positive associated with shortened or deleted TRAF3, HPV-negative characterized by co-amplification of 11q13 and 11922,
cell carcinoma smoking-related characterized by TP53 mutations, CDKN2A inactivation, CNVs
Sa 206 TP53, ATRX, and RB1 are recurrently mutated across all types; synovial sarcomas expressed fusions in SSX1 or SSX2 and TERT;
feome JUN amplification associates with worse survival in dedifferentiated liposarcoma
Paraganglioma and 173 Four distinct subtypes: Wnt-altered, cortical admixture, pseudohypoxia, and kinase signaling; MAML3 fusion gene and CSDE1 somatic
pheochromocytoma mutation define and drive the poor prognosis Wnt-altered subtype
Thymoma 124
Adrenocortical o1 Overexpression of IGF2, mutations in TP53, PRKAR1A and other genes, and copy-number alterations were common; hypoploidy followed
carcinoma by whole-genome doubling may be a driving mechanism
Mesothelioma 87
Uveal melanoma 80 Complex mutation in BAP1 gene; identified distinct subdivisions of disomy 3 (D3) and monosomy 3 (M3) subtypes; in M3, mutually exclu-

sive EIF1AX and SRSF2/SF3B1 mutations have distinct methylation profiles and prognoses

(Blum, Wang, & Zenklusen, Cell 2018)



The Cancer Genome Atlas (TCGA)

RESULTS & FINDINGS

Improved our

For example, a TCGA study found the basal-like
subtype of breast cancer to be similar to the

MOLECULAR understanding of the serous subtype of ovarian cancer on a molecular
8} BASIS OF genomic underpinnings level, suggesting that despite arising from
CANCER of cancer different tissues in the body, these subtypes may
share a common path of development and
respond to similar therapeutic strategies.
TUMOR Ravokicrnizad Bot TCGA rgvolutionized how cancer is glassified by
SUBTYPES canceriarclassiied ldentlfylng tumqr subtypes with distinct sets of
genomic alterations.”
Identified genomic TCGA's identification of targetable genomic
characteristics of tumors alterations in lung squamous cell carcinoma led
THERAPEUTIC | that can be targeted with o NCI’s Lung-MAP Trial, which will treat
TARGETS currently available patients based on the specific genomic changes

therapies or used to help
with drug development

in their tumor.

(Hutter & Zenklusen (2018) Cell)



The Cancer Genome Atlas (TCGA)

THE TEAM

COLLABORATING
INSTITUTIONS

across the United States
and Canada

WHAT’S NEXT?

The Genomic Data

Commons (GDC)

houses TCGA and other

NCl-generated data =,

sets for scientists to “ 0
access from anywhere.

The GDC also has

many expanded

capabilities that will a 9
allow researchers to

answer more clinically

relevant questions with
increased ease.

*TCGA'’s analysis of stomach cancer revealed that it is not a single disease, but a disease composed
of four subtypes, including a new subtype characterized by infection with Epstein-Barr virus.

(Hutter & Zenklusen (2018) Cell)



Components of the TCGA Research Network

Biospecimen Core Resource (BCR) — Tissue samples are carefully cataloged, processed,
checked for quality and stored, complete with important medical information about the patient.

Genome Characterization Centers (GCCs) — Several technologies will be used to analyze
genomic changes involved in cancer. The genomic changes that are identified will be further
studied by the Genome Sequencing Centers.

Genome Sequencing Centers (GSCs) — High-throughput Genome Sequencing Centers will
identify the changes in DNA sequences that are associated with specific types of cancer.

Proteome Characterization Centers (PCCs) — The centers, a component of NClI’s Clinical
Proteomic Tumor Analysis Consortium, will ascertain and analyze the total proteomic content
of a subset of TCGA samples.

Data Coordinating Center (DCC) — The information that is generated by TCGA will be
centrally managed at the DCC and entered into the TCGA Data Portal and Cancer Genomics
Hub as it becomes available. Centralization of data facilitates data transfer between the
network and the research community, and makes data analysis more efficient. The DCC
manages the TCGA Data Portal.

Cancer Genomics Hub (CGHub) — Lower level sequence data will be deposited into a secure
repository. This database stores cancer genome sequences and alignments.

Genome Data Analysis Centers (GDACs) — Immense amounts of data from array and
second-generation sequencing technologies must be integrated across thousands of samples.
These centers will provide novel informatics tools to the entire research community to facilitate
broader use of TCGA data.



CGC Centers and Data Types

BCGAC lllumina MiRNA-seq

BROAD SNP 6.0 (copy number)

HMS Harvard lllumina DNA-seq

JHU/USC Methylation

MD Anderson RPPA

UNC Agilent Microarray (gene exp)

lllumina RNA-seq



Comprehensive Molecular Characterization of
Colorectal Cancer

ARTICLE

doi:10.1038/naturel1252

Comprehensive molecular characterization
of human colon and rectal cancer

The Cancer Genome Atlas Network*

To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples,
analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA
expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total,
16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high
microsatellite instability, usually with hypermethylation and MLHI silencing, and one-quarter had somatic
mismatch-repair gene and polymerase ¢ (POLE) mutations. Excluding the hypermutated cancers, colon and rectum
cancers were found to have considerably similar patterns of genomic alteration. Twenty -four genes were significantly
mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations
in ARIDIA, SOX9 and FAMI123B. Recurrent copy-number alterations include potentially drug-targetable amplifications
of ERBB2and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2
and WNT pathway member TCF7LI. Integrative analyses suggest new markers for aggressive colorectal carcinoma and
an important role for MYC-directed transcriptional activation and repression.

This file contains the legends for Supplementary Tables 1-12, Supplementary Tables 1-9 and Supplementary Data
files 1-2, Supplementary Methods, which include 17 Figures and 2 Tables (see Contents for details) and
Supplementary Figures 1-9.
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Integrative Analysis
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Novel Insights
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Figure 3 | Copy-number changes and structural aberrations in CRC.

a, Focal amplification of 11p15.5. Segmented DNA copy-number data from
single-nucleotide polymorphism (SNP) arrays and low-pass whole-genome
sequencing (WGS) are shown. Each row represents a patient; amplified regions
are shown in red. b, Correlation of expression levels with copy-number changes
for IGF2 and miR-483. ¢, IGF2 amplification and overexpression are mutually

exclusive of alterations in PI3K signalling-related genes. d, Recurrent NAV2-
TCF7L2 fusions. The structure of the two genes, locations of the breakpoints
leading to the translocation and circular representations of all rearrangements
intumourswith a fusion are shown. Red linelines represent the NAV2-TCF7L2
fusions and black lines represent other rearrangements. The inner ring
represents copy-number changes (blue denotes loss, pink denotes gain).



Diversity and frequency of genetic changes leading to
deregulation of signaling pathways in CRC

(PI3K signalling

(WNT signalling  £[92%] z TGF-B signalling 2[27%[87%]2)

z[50%|[53%|%

DKK1-4

1% AL/l 4% |

RTK-RAS signalling)

ERBB2

6% |13%

¥
a IRS2 .

[ 7%] 3%]| (TNRAS
+ [10%]10%]

-:I'| 3CA LJ
s

!

Proliferation, cell survival, translation )

(P53 signalling

WNT
TGF-B

PI3K
\7P53

J| Pathway activated [ Pathway inactivated

Non-hypermutated tumours

\( DNA ATM
replication —
Soxs | — 2Leml) ... Proliferation, stem/ stress + -
Livel 7o) progenitor phenotype Oncogenic _, [ o3 4 Proliferation
. stress Cell survival
sy
4 Frequency A 4— ~
S Upreguiated Per cent of cases (%) — Protein activation » Transcriptional activation Complex
\_Non-hypermutated  Hypermutated Activated  —] Protein inhibition | Transcriptional inhibition )
/~Pathway alteration pattern N\

RTK/RAS

Hypermutated tumours




Integrative Pathway Analysis
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Figure 5 | Integrative analyses of multiple data sets. a, Clustering of genes
and pathways affected in colon and rectum tumours deduced by PARADIGM
analysis. Blue denotes under-expressed relative to normal and red denotes
overexpressed relative to normal. Some of the pathways deduced by this
method are shown on the right NHE], non-homologous end joining. b, Gene-
expression signatures and SCNAs associated with tumour aggression.
Molecular signatures (rows) that show a statistically significant association with
tumour aggressiveness according to selected clinical assays (columns) are
shown in colour, with red indicating markers of tumour aggressiveness and
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blue indicating the markers of less-aggressive tumours. Significance is based on
the combined P value from the weighted Fisher’s method, corrected for
multiple testing, Colour intensity and score is in accordance with the strength of
an individual clinical -molecular association, and is proportional to log;(P),
where P is the P value for that association. To limit the vertical extent of the
figure, gene-expression signatures are restricted to a combined P value of
P<10"7 and SCNAsto P < 1077, and features are shown only if they are also
significant in the subset of non-MSI-H samples (the analysis was performed
separately on the full data as well as on the MSI-H and non-MSI-H subgroups).



LETTER

doi:10.1038/nature12213

Mutational heterogeneity in cancer and the search
for new cancer-associated genes

Michael S. Lawrence'*, Petar Stojanov'+?*, Paz Polak*#*, Gregory V. Kryukov">#, Kristian Cibulskis', Andrey Sivachenko',
Scott L. Carter’, Chip Stewart', Craig H. Mermel"?, Steven A. Roberts®, Adam Kiezun', Peter S. Hammerman"?, Aaron McKenna'”’,
Yotam Drier™*>8, Lihua Zou', Alex H. Ramos', Trevor J. Pugh"??, Nicolas Stransky™°, Elena Helman™', Jaegil Kim',

Carrie Sougnez', Lauren Ambrogio’, Elizabeth Nickerson', Erica Shefler', Maria L. Cortés', Daniel Auclair!, Gordon Saksena’,
Douglas Voet', Michael Noble', Daniel DiCara', Pei Lin', Lee Lichtenstein', David I. Heiman', Timothy Fennell’,

Marcin Imielinski"®, Bryan Hernandez', Eran Hodis"?, Sylvan Baca'?, Austin M. Dulak"?, Jens Lohr"2, Dan-Avi Landau">",
Catherine J. Wu>?, Jorge Melendez-Zajgla'?, Alfredo Hidalgo-Miranda'?, Amnon Koren"?, Steven A. McCarroll"?, Jaume Mora®®,
Ryan S. Lee?*'¥ Brian Crompton®'4, Robert Onofrio', Melissa Parkin', Wendy Winckler', Kristin Ardlie', Stacey B. Gabriel',
Charles W. M. Roberts**'4, Jaclyn A. Biegel'>, Kimberly Stegmaier">'#, Adam J. Bass'>, Levi A. Garraway">3,

Matthew Meyerson"“, Todd R. Golub™? 's, Dmitry A. Gordeni.n(’, Shamil Sunyaev"3'4, Eric S. Lander™*'° & Gad Getz"®

Pan-Cancer
Analysis
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Figure 1| Somatic mutation frequencies observed in exomes from 3,083
tumour-normal pairs. Each dot corresponds to a tumour-normal pair, with
vertical position indicating the total frequency of somatic mutations in the
exome. Tumour types are ordered by their median somatic mutation
frequency, with the lowest frequencies (left) found in haematological and
paediatric tumours, and the highest (right) in tumours induced by carcinogens

such as tobacco smoke and ultraviolet light. Mutation frequencies vary more
than 1,000-fold between lowest and highest across different cancers and also

within several tumour types. The bottom panel shows the relative proportions
of the six different possible base-pair substitutions, as indicated in the legend on
the left. See also Supplementary Table 2.



ARTICLE

Pan-Cancer
Signatures of mutational processes in

human cancer An a IyS | S

A list of authors and their affiliations appears at the end of the paper

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these
mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational
processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than
20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC
family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated
with age of the patient at cancer diagnosis, known genic exposures or defects in DNA mai but many are of
cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic
regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying
the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
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Figure 1| The prevalence of somatic mutations across human cancer types.  cancer types are ordered on the horizontal axis based on their median numbers
Every dot represents a sample whereas the red horizontal lines are the median  of somatic mutations. We thank G. Getz and colleagues for the design of this
numbers of mutations in the respective cancer types. The vertical axis (log figure?. ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia;
scaled) shows the number of mutations per megabase whereas the different CLL, chronic lymphocytic leukaemia.



~_Pan-Cancer Analysis of TCGA Data
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Focus on TCGA Pan-Cancer Analysis
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Genomic alterations in diverse cell types at different sites in the body give rise to
hundreds of different forms of cancer and the ways in which these changes give rise to
tumors with different biology, pathology and treatment strategies are beginning to be
characterized. The Cancer Genome Atlas Research Network has catalogued the
aberrations in the DNA, chromatin and RNA of the genomes of thousands of tumors
relative to matched normal cellular genomes and have analyzed their epigenetic and
protein consequences. Here, the Pan-cancer initiative examines the similarities and
differences among the genomic and cellular alterations found in the first dozen tumor
types to be profiled by TCGA. This first look across cancer offers new tools in genomics
and bicinformatics and the prospect of repurposing targeted therapies directed by the
molecular pathology of the tumors in addition to their clinical classification.

http://www.nature.com/ng/focus/tcga/index.html




Pan-Cancer Analysis of TCGA Data
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Pan-Cancer Analysis of TCGA Data

COAD READ
BRCA LUSC

GCCs and
GSCs

DCC

AWGs

GDACs

The Cancer Genome Atlas Pan-Cancer
analysis project

The Cancer Genome Atlas Research Network!, John N Weinstein®3, Eric A Collisson%, Gordon B Mills3,
Kenna R Mills Shaw™%, Brad A Ozenberger’, Kyle Ellrott®?, Ilya Shmulevich!?, Chris Sander!! &
Joshua M Stuart8?®

The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to
discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major
opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages.
The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and
their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with
a similar genomic profile.

Table 1 Data freeze used by the Pan-Cancer project as defined on 21 December 2012

Cancer RPPA?2 DNA methylation® Copy b Mutationd microRNA® Expressionf
LUSC 195 358 345 178 332 227
READ 130 162 164 69 143 71
GBM 214 405 578 290 501 495
LAML NA 194 198 197 187 179
HNSC 212 310 310 277 309 303
BLCA 54 126 126 99 121 96
KIRC 423 457 457 417 442 431
UCEC 200 512 511 248 497 333
LUAD 237 431 357 229 365 355
oV 332 592 577 316 454 581
BRCA 408 888 887 772 870 817
COAD 269 420 422 155 407 192
Total 2,674 4,855 4,932 3,247 4,628 4,080

Tabulated are the numbers of unique tumor samples available for each tumor type (rows) and each measurement platform (columns). NA, not available.
2Reverse-phase protein arrays measuring protein and phosphoprotein abundance. °DNA methylation at CpG islands. cMlcroarray -based measurement of copy number. 9Samples subjected
to whole-exome sequencing to determine single-nucleotide and structural variants. ®Sequencing of microRNAs. fRNA sequencing and microarray gene expression analysis.



Pan-Cancer Atlas

https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html

Welcome to the Pan-Cancer Atlas

From The Cancer Genome Atlas (TCGA) consortium, a large-scale collaboration initiated and supported by
the National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI).

From the analysis of over 11,000 tumors from 33 of the most
prevalent forms of cancer, the Pan-Cancer Atlas provides a
uniquely comprehensive, in-depth, and interconnected
understanding of how, where, and why tumors arise in humans. As
a singular and unified point of reference, the Pan-Cancer Atlas is
an essential resource for the development of new treatments in the

pursuit of precision medicine.

The visualization below presents the Pan-Cancer Atlas as a series
of shaded rings that join together to create a beautiful, singular
spectrum. Like the research itself, the full impact of this
visualization is found in its cohesion. As you scroll below you will
see a collection of 27 papers divided into three main categories:
cell-of-origin patterns, oncogenic processes, and signaling
pathways. Each category is anchored by a flagship paper providing
a summary of the core findings for that topic. These are supported

by companion papers that explore subtopics in depth.




Pan-Cancer Atlas

https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html

Cell-of-Origin Patterns

==
/0\\\\\\‘\:“‘
NNE

Signaling Pathways

Flagship Paper

Cell
Cell-of-Origin Patterns Dominate the Molecular Classification of

10,000 Tumors from 33 Types of Cancer

Gomprehensive, integrated molecular analysis identifies molecular relationships across a
large diverse set of human cancers, suggesting future directions for exploring clinical
actionability in cancer treatment.

Companion Papers

Cell

Machine Learning Identifies Stemness Features Associated with
Oncogenic Dedifferentiation

‘Stemness features extracted from transcriptomic and epigenetic data from TCGA tumors

reveal novel biological and clinical insight, as well as potential drug targets for anti-cancer
therapies.

Cancer Cell
A Comprehensive Pan-Cancer Molecular Study of Gynecologic and

Breast Cancers

By performing molecular analyses of 2,579 TGGA gynecological (OV, UGEC, GESC, and
UCS) and breast tumors, Berger et al. identify five prognostic subtypes using 16 key
molecular features and propose a decision tree based on six ciinically assessable features
that classifies patients into the subtypes.

Flagship Paper

Cell

Oncogenic Signaling Pathways in The Cancer Genome Atlas
Nikoiaus Schultz and colagu

An integrated analysis of genetic alerations in 10 signaling pathways in >9,000 tumors
profiled by TCGA highlights sigrificant representation of individual and co-oceurting

actionable alterations in these pathways, suggesting opportunities for targeted and
Gombination therapies.

Companion Papers

Cell Systems
Pan-cancer Alterations of the MYC Oncogene and Its Proximal

Network across the Cancer Genome Atlas

‘Schaub et al. present a computational study determining the frequency and extent of
alterations of the MYC network across the 33 human cancers of TCGA,

Cell Reports.
Machine Learning Detects Pan-cancer Ras Pathway Activation in

The Cancer Genome Atlas

Way et al. develop a machine-learning approach using Pan-Cancer Atlas data to detect Ras
activation in cancer. Integrating mutation, copy number, and expression data, the authors
‘show that their method detects Ras-activating variants in tumors and sensitivity to MEK
inhibitors in cell fines.

Oncogenic Processes

Resources

Flagship Paper

Cell
Perspective on Oncogenic Processes at the End of the Beginning

of Cancer Genomics

A synthesized view on oncogenic processes based on PanGancer Atlas analyses highlights
the complex impact of genome alterations on the signaling and multi-mic profiles of human
‘cancers as well as their influence on tumor microenvironment

Companion Papers

Cell
Pathogenic Germline Variants in 10,389 Adult Cancers

A pan-cancer analysis identifies hundreds of predisposing germiine variants

Cell
Comprehensive Characterization of Cancer Driver Genes and
Mutations

A comprehensive analysis of oncogenic driver genes and mutations in >9,000 tumors across

33 cancer types highlights the prevalence of clinically actionable cancer driver events in
TGGA tumor samples.

Cell Reports
Driver Fusions and Their Implications in the Development and

Treatment of Human Cancers

National Cancer Institute
Access to the TCGA genomic datasets is provided through the

Genomic Data Commons

Cell
Snapshot: TCGA-Analyzed Tumors

Cell
Commentary: The Cancer Genome Atlas: Creating Lasting Value
Beyond Its Data

erolyn Huiter and

he TCGA Legacy

Editorial: Charting a Course to a Cure




Tumor Heterogeneity
Cancer is not one but many diseases. It is different naturelNS|GHT

in each patient and continuously evolves into a

progressively complex interplay of diverse tumour
cells with their changing environment. 19 September 2013 / Vol

501 / Issue No 7467

The picture that has emerged over the past few

decades — especially with the advent of more

sophisticated model systems and technologies — REVIEWS |
) o i 328 Tumour heterogeneity and cancer
is of even greater than anticipated genetic, cell plasticity
. . . Corbin E. Meacham & Sean J. Morri
phenotypic and functional heterogeneity and I TRACTam oA & FEOTRon
. . vy . ) 338 The causes and consequences of
plasticity within tumours and between primary genetic heterogeneity in cancer
: ; evolution
tum(?urs .and metastellse.s. Adding to this | Robecca Burell Nicholas
bewildering complexity is the heterogeneity of the gﬂcGranahan,JiriBartek&Charles
. . . . . t
tumour micro-environment, inflammatory stimuli, Hanon _
. . 346 Influence of tumour micro-
the immune response, mechanical stresses, environment heterogeneity on
.. . h i
therapeutic intervention and many other factors, e vl de
such as diet and the microbiota. These Sauvage A
i i i i 355 Tumour heterogeneity in the clinic
contlnuogsly changing envwonment.al influences Phiiope L Bedary Aaron R Hansen
affect which cancer cell subpopulations are able to MarkJ. Ratain & Lillian L. Siu
survive, proliferate, spread and resist therapy. PERSPECTIVE

365 Selection and adaptation during

metastatic cancer progression
(Barbara Marte, Nature 2013) Christoph A Klein Prog



Tumor Heterogeneity
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Tumor Heterogeneity

e NEW ENGLAND
JOURNAL o MEDICINE

ESTABLISHED IN 1812

MARCH 8, 2012 VOL. 366 NO. 10

Intratumor Heterogeneity and Branched Evolution Revealed
by Multiregion Sequencing

Marco Gerlinger, M.D., Andrew J. Rowan, B.Sc., Stuart Horswell, M.Math., James Larkin, M.D., Ph.D.,
David Endesfelder, Dip.Math., Eva Gronroos, Ph.D., Pierre Martinez, Ph.D., Nicholas Matthews, B.Sc.,
Aengus Stewart, M.Sc., Patrick Tarpey, Ph.D., Ignacio Varela, Ph.D., Benjamin Phillimore, B.Sc., Sharmin Begum, M.Sc
Neil Q. McDonald, Ph.D., Adam Butler, B.Sc., David Jones, M.Sc., Keiran Raine, M.Sc., Calli Latimer, B.Sc.,
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Exon-capture sequencing was performed on tumor DNA from pretreatment
biopsy samples of the primary tumor (PreP) and chest-wall metastasis (PreM),
primary-tumor regions of the nephrectomy specimen (R1 to R9), a perineph-
ric metastasis in the nephrectomy specimen (M1), and two regions of the
excised chest-wall metastasis (M2a and M2b). LM denotes liver metastasis,
and PD progressive disease. Green boxes indicate periods of everolimus
treatment, with the treatment duration provided in weeks. Dotted lines indi-
cate time points of biopsies, and the asterisk indicates a delay in nephrec-
tomy because of toxicity.
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Exon-capture sequencing was performed on tumor DNA from pretreatment
biopsy samples of the primary tumor (PreP) and chest-wall metastasis (PreM),
primary-tumor regions of the nephrectomy specimen (R1 to R9), a perineph-
ric metastasis in the nephrectomy specimen (M1), and two regions of the
excised chest-wall metastasis (M2a and M2b). LM denotes liver metastasis,
and PD progressive disease. Green boxes indicate periods of everolimus
treatment, with the treatment duration provided in weeks. Dotted lines indi-
cate time points of biopsies, and the asterisk indicates a delay in nephrec-
tomy because of toxicity.
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Figure 4. Genetic Intratumor Heterogeneity and Phylogeny in Patient 2.

Panel A shows the regional distribution of somatic mutations detected by exome sequencing in a heat map, with gray indicating the
presence of a mutation and dark blue the absence of a mutation. The color bars above the heat map indicate classification of mutations ac-
cording to whether they are ubiquitous, shared by primary-tumor regions, or unique to the region (private). For gene names, purple
indicates that the mutation was validated, and orange indicates that the validation of the mutation failed. Panel B shows phylogenetic re-
lationships of the tumor regions. Branch lengths are proportional to the number of somatic mutations separating the branching points.
Potential driver mutations were acquired by the indicated genes in the branch (arrows).
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ABSTRACT

Introduction: Data regarding the pre-treatment inter-
tumor heterogeneity of potential biomarkers in
advanced-stage lung cancers is limited. A finding of such
heterogeneity between primary and metastatic lesions
would prove valuable to determine if a metastatic lesion
can be a surrogate for the primary tumor, as more
biomarkers will likely be used in the future to inform
treatment decisions.

Methods: We performed RNA sequencing to analyze
intertumor heterogeneity in 30 specimens (primary
tumors, intrathoracic, and extrathoracic metastatic
lesions) obtained from five treatment-naive lung cancer
patients.

Results: The global unsupervised clustering analysis

showed that the lesions clustered at the individual pa-

tient level rather than on the metastatic sites, suggesting

that the characteristics of specific tumor cells have a

greater impact on the gene expression signature than the
4

© 2018 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:  Biomarkers; Tumor heterogeneity; RNA
sequencing; Autopsy; Immune-related markers; RET fusion

Introduction

The recent development of personalized molecular
targeted therapies in lung cancer based on genetic
aberrations of tumor cells has dramatically improved the
efficacy of systemic therapies and prolonged patient
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microenvironment in which the i lops. The
mutational and transcriptional data highlight the pres-
ence of intertumor heterogeneity showing that the
primary tumors are usually distinct from metastatic
lesions. Through a comparison between metastatic
lesions and the primary tumors, we observed that
pathways related to cell proliferation were upregulated,
whereas immune-related pathways were downregulated
in metastatic lesions.

Conclusion: These data not only provide insight into the
evolution of lung cancers, but also imply possibilities and
limitations of biomarker-based treatment in lung cancers.
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Analysis based on MSigDB C2 curated KEGG gene sets. (Dysregulated pathways in all lesions are summarized in Supplementary
Table 1, and are excluded from the figure.) (C) Representative mutations identified in case 1. KIF5B-RET fusion was also
identified in all lesions, but not in noncancerous tissue, using TopHat-Fusion on the RNA-seq. Insulin-like growth factor 2
receptor (IGF2R), major histocompatibility complex, class |, A (HLA-A), and erb-b2 receptor tyrosine kinase 2 (ERBB2) mu-
tations were also identified as trunk mutations, whereas NF1 mutation was present only in some metastatic lesions. The
phylogenetic tree was constructed using a Neighbor joining method implemented in the R phangom package, based on so-
matic and deleterious mutations in reliably expressed genes. The genes with asterisk indicate that somatic/deleterious
mutations in those genes were identified in lesions obtained from the other lung adenocarcinoma patient (case 2).

1T

KEGG_NUCLEOTIDE_EXCISION_REPAIR
KEGG_SMALL_CELL_LUNG_CANCER
KEGG_PANCREATIC_CANCER
KEGG_MTOR_SIGNALING_PATHWAY
KEGG_THYROID_CANCER
KEGG_CIRCADIAN_RHYTHM_MAMMAL
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS
KEGG_PYRUVATE_METABOLISM
KEGG_HOMOLOGOUS_RECOMBINATION
KEGG_NON_HOMOLOGOUS_END_IOINING
KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS
KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION
KEGG_NOTCH_SIGNALING_PATHWAY
KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION
KEGG_INSULIN_SIGNALING_PATHWAY
KEGG_TGF_BETA_SIGNALING_PATHWAY
KEGG_ACUTE_MYELOID_LEUKEMIA
KEGG_PHOSPHATIDYLINOSITOL SIGNALING_SYSTEM
KEGG_PATHWAYS_IN_CANCER
KEGG_NON_SMALL_CELL_LUNG_CANCER
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY
KEGG_FOCAL_ADHESION
KEGG_SPHINGOLIPID_METABOLISM
KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE METABOLISM
KEGG_GLYCEROLIPID_METABOLISM

KEGG_ERBB_SIGNALING_PATHWAY

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON

KEGG_ECM_RECEPTOR_INTERACTION

KEGG_MAPK_SIGNALING_PATHWAY

KEGG_PPAR_SIGNALING_PATHWAY

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC

KEGG_ONE_CARBON_POOL_BY_FOLATE

KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION

KEGG_VIRAL_MYOCARDITIS

KEGG_LEISHMANIA_INFECTION

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS

KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS

KEGG_GALACTOSE_METABOLISM

KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION

KEGG_OTHER_GLYCAN_DEGRADATION

KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION

Bun H

(jesaosip) BINd|d

JoA

|eunselpajy) eina|d

KEGG_O_GLYCAN_BIOSYNTHESIS
KEGG_GNRH_SIGNALING_PATHWAY
KEGG_CYSTEINE_AND_METHIONINE_METABOLISM

Kewud



Implications in Clinical Trial Design
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Figure 1 | Clinical-trial design frameworks. Inapopulation of molecularly harbour the same or related molecular aberrations, and match drugs to the
profiled patients who have tumours of different histologies (shown by positionof ~ aberration specific or related groups. ¢, Standard N-of-1 trials randomly assign
tumour) and molecular aberrations (shown as different colours), the framework ~  patients to different drugs in different sequential orders, with washout periods

for a clinical trial can take a number of forms. a, Histology-based clinical trials between drugs to minimize crossover effects. At completion, the individual
evaluate different molecular aberrations by enrolling patients with the same effect of each drug and the average effects of each drug across individuals can be
tumour histology but who harbour different aberrations, and match groups of analysed. d, Modified N-of-1 trials use each patient as his or her own control and

patients to different drugs. b, Histology-independent, aberration-specific clinical ~ compare the treatment effect of the current matched drug with that of the most
trials, or ‘basket’ trials, enrol patients with different tumour histologies but who recent earlier drug. (B edard et al Nature 2013 )
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Master Protocols to Study Multiple
Therapies, Multiple Diseases, or Both

Janet Woodcock, M.D., and Lisa M. LaVange, Ph.D.

|| IGH-QUALITY EVIDENCE IS WHAT WE USE TO GUIDE MEDICAL PRACTICE.
‘*‘ The standard approach to generating this evidence — a series of clinical
4. . trials, each investigating one or two interventions in a single disease —
has become ever more expensive and challenging to execute. As a result, important
clinical questions go unanswered. The conduct of “precision medicine” trials to evalu-
ate targeted therapies creates challenges in recruiting patients with rare genetic
subtypes of a disease. There is also increasing interest in performing mechanism-
based trials in which eligibility is based on criteria other than traditional disease
definitions. The common denominator is a need to answer more questions more ef-
ficiently and in less time.

A methodologic innovation responsive to this need involves coordinated efforts
to evaluate more than one or two treatments in more than one patient type or disease
within the same overall trial structure.™* Such efforts are referred to as master pro-
tocols, defined as one overarching protocol designed to answer multiple questions.
Master protocols may involve one or more interventions in multiple diseases or a
single disease, as defined by current disease classification, with multiple interventions,
each targeting a particular biomarker-defined population or disease subtype. In-
cluded under this broad definition of a master protocol are three distinct entities:
umbrella, basket, and platform trials (Table 1 and Figs. 1 and 2). All constitute a
collection of trials or substudies that share key design components and operational
aspects to achieve better coordination than can be achieved in single trials designed
and conducted independently.

A master protocol may involve direct comparisons of competing therapies or be
structured to evaluate, in parallel, different therapies relative to their respective
controls. Some take advantage of existing infrastructure to capitalize on similarities
among trials, whereas others involve setting up a new trial network specific to the
master protocol. All require intensive pretrial discussion among sponsors contributing
therapies for evaluation and parties involved in the conduct and governance of the tri-
als to ensure that issues surrounding data use, publication rights, and the timing
of regulatory submissions are addressed and resolved before the start of the trial.

Table 1. Types of Master Protocols.

Type of Trial Objective

Umbrella To study multiple targeted therapies in the context of a single
disease

Basket To study a single targeted therapy in the context of multiple

diseases or disease subtypes

Platform To study multiple targeted therapies in the context of a single
disease in a perpetual manner, with therapies allowed to
enter or leave the platform on the basis of a decision algo-
rithm

(Woodcock & LaVange, NEJM 2017)
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New Clinical Trial Designs

Table 2. Examples of Master Protocols in Cancer.*

Trial

B2225¢

BRAF V600’

NCI-Match?®

BATTLE-1"

I-SPY 2:022

Lung-MAP!*

Description

Basket trial to determine
cancers responsive to
imatinib

Basket trial to evaluate the
efficacy of vemurafenib
in nonmelanoma can-
cers

Umbrella trial to determine
whether treating can-
cers according to mo-
lecular abnormalities is
effective

Umbrella trial to evaluate
targeted therapies in
chemotherapy-refracto-
ry NSCLC

Adaptive platform trial to
identify treatment regi-
mens for locally ad-
vanced breast cancer in
the context of neoadju-
vant therapy on the ba-
sis of biomarker signa-
tures

Master protocol to evaluate
biomarker-matched
therapies in rare squa-
mous-cell subsets of
NSCLC

Design

Phase 2, multicenter,

open-label, noncom-

parative trial

Early phase 2, multi-
center, open-label,
noncomparative,

adaptive trial using

Simon's two-stage
design

Drug or Drugs

Single: imatinib (400 or 800

mg per day)

Vemurafenib monotherapy or

(in some patients with
colorectal cancer) vemu-
rafenib plus cetuximab

Exploratory, multicenter, Multiple: 30 treatments (as of

noncomparative trial

Phase 2, single-center,

comparative, adap-

tive randomization
trial

Phase 2, multicenter,

comparative, adap-

tive randomization
trial

Phase 2-3 comparative

trial

May 2016), both FDA-
approved and investiga-
tional, that target gene ab-
normalities

Multiple: three monotherapies

(erlotinib, vandetanib, and
sorafenib) and one combi-
nation (erlotinib plus bex-
arotene)

Multiple: standard chemother-
apy and five new drugs (ini-

tially) as add-on to chemo-

therapy; 12 treatments test-

ed to date, with latest (pa-
tritumab) added October
2016

Multiple: four investigational

drugs plus one therapy for
no-match control group
(initially); three investiga-
tional drugs remain

Disease and Target

Study Population

40 cancers (solid tumors and 186 patients =15 yr

hematologic cancers)
with activation of ima-
tinib target kinases

Multiple nonmelanoma can-
cers with BRAF V600 mu-
tations; eight tumor-spe-
cific cohorts plus an “all
others"” cohort

Advanced solid tumor, lym-
phoma, or myeloma;
DNA sequencing for ac-
tionable mutations

Advanced NSCLG; targets in-
cluded EGFR mutation,
KRAS/BRAF mutation,
VEGF expression, and
RXRs/CyclinD1 expres-
sion

Early, high-risk breast cancer;

three biomarkers (hor-
mone-receptor status,
HER2 status, and
MammaPrint risk score)
define eight genetic sub-
groups

Squamous-cell NSCLC; mul-
tiple targets (four molec-
ular targets initially; three
remain)

of age

122 adults (218 yr
of age)

35 adults planned
per substudy;
pediatric study
to begin in 2017

255 adults in whom
=1 chemothera-
py regimen had
failed

1920 women (esti-
mated) with in-
vasive tumor
=2.5 cmin di-
ameter

100-170 patients
planned for
phase 2 (40 are
now enrolled);
300-400
planned for
phase 3

End Points

Tumor response (SWOG
criteria and investiga-
tor's assessment)

Response rate (assessed
by investigators ac-
cording to RECIST
or IMWG criteria)
atwk 8

Tumor response (prima-
ry) and progression-
free survival

Complete or partial re-
sponse or stable dis-
ease according to
RECIST criteria at wk
8 (primary), progres-
sion-free survival,
overall survival, and
toxicity

Pathological complete
response

Objective response rate,
progression-free sur-
vival, and overall sur-
vival

* BATTLE-1 denotes Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination 1, IMWG International Myeloma Working Group, I-SPY 2 Investigation of Serial
Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2, Lung-MAP Lung Master Protocol, NCI-MATCH National Cancer Institute Molecular Analysis for
Therapy Choice, NSCLC non-small-cell lung cancer, RECIST Response Evaluation Criteria in Solid Tumors, and SWOG Southwest Oncology Group.

(Woodcock & LaVange, NEJM 2017)
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Genomic Identification of Significant Targets in Cancer (GISTIC)

« Statistical method for identifying regions of aberration that are more likely to drive
cancer pathogenesis. The method identifies those regions of the genome that are
aberrant more often than would be expected by chance, with greater weight given to
high amplitude events (high-level copy-number gains or homozygous deletions) that
are less likely to represent random aberrations.

-
Aberrations in — Cancer summary
each tumor ' profile
Score genome —
(G=s ) I ]
c @ o o (G=sum of -
o = = amplitudes) = Sianif
= [ ] — = ignificantly
o / ) — aberrant
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= i i o > Significance significance  [#
@ — locations and Q s ]
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TUMORS G scores in permutations

Fig. 1. Overview of the GISTIC method. After identifying the locations and, in the case of copy-number alterations, magnitudes (as log; signal intensity ratios)
of chromosomal aberrations in multiple tumors (Left), GISTIC scores each genomic marker with a Gscore that is proportional to the total magnitude of aberrations
at each location (Upper Center). In addition, by permuting the locations in each tumor, GISTIC determines the frequency with which a given score would be
attained if the events were due to chance and therefore randomly distributed (Lower Center). A significance threshold (green line) is determined such that
significant scores are unlikely to occur by chance alone. Alterations are deemed significant if they occur in regions that surpass this threshold (Right). For more
details see S/ Text.

http://www.broadinstitute.org/cancer/cga/gistic (Beroukhim et al PNAS 2007)



Genomic Identification of Significant Targets in Cancer (GISTIC)
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MutSig (and variants) to identify "Mutation
Significance” from Sequencing Data

« The input data is lists of mutations (and indels) from a set of samples (patients) that

were subjected to DNA sequencing, as well as information about how much territory
was covered in the sequencing.

« MutSig builds a model of the background mutation processes that were at work
during formation of the tumors, and it analyzes the mutations of each gene to

identify genes that were mutated more often than expected by chance, given the

background model.
Mutations in each tumor Mutation tally Gene scores

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

g 3 g .

v 38 8 8

O 9 9 9

10 10 10

11 11 11

12 12 12
A B C D Significance
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http://www.broadinstitute.org/cancer/cga/mutsig



PARADIGM

Vol. 26 ISMB 2010, pages i237- ABSTRACT

doi:10.1093/bioinformatics/bt

Inference of patient-specific pathway activities from

multi-dimensional cancer genomics data using PARADIGM

Charles J. Vaske'-T, Stephen C. Benz? T, J. Zachary Sanborn?, Dent Earl?,
Christopher Szeto?, Jingchun Zhu?, David Haussler'-2 and Joshua M. Stuart?*

THoward Hughes Medical Institute and 2Department of Biomolecular Engineering and Center for Biomolecular

Science and Engineering, UC Santa Cruz, CA, USA
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Fig. 2. Overview of the PARADIGM method. PARADIGM uses a pathway
schematic with functional genomic data to infer genetic activities that can

be used for further downstream analysis.

Motivation: High-throughput data is providing a comprehensive
view of the molecular changes in cancer tissues. New technologies
allow for the simultaneous genome-wide assay of the state of
genome copy number variation, gene expression, DNA methylation
and epigenetics of tumor samples and cancer cell lines. Analyses of
current data sets find that genetic alterations between patients can
differ but often involve common pathways. It is therefore critical to
identify relevant pathways involved in cancer progression and detect
how they are altered in different patients.
Results: We present a novel method for inferring patient-specific
genetic activities incorporating curated pathway interactions among
genes. A gene is modeled by a factor graph as a set of interconnected
variables encoding the expression and known activity of a gene
and its products, allowing the incorporation of many types of omic
data as evidence. The method predicts the degree to which a
pathway's activities (e.g. internal gene states, interactions or high-
level ‘outputs’) are altered in the patient using probabilistic inference.
Compared with a competing pathway activity inference approach
called SPIA, our method identifies altered activities in cancer-related
pathways with fewer false-positives in both a glioblastoma multiform
(GBM) and a breast cancer dataset. PARADIGM identified consistent
pathway-level activities for subsets of the GBM patients that are
overlooked when genes are considered in isolation. Further, grouping
GBM patients based on their significant pathway perturbations
divides them into clinically-relevant subgroups having significantly
different survival outcomes. These findings suggest that therapeutics
might be chosen that target genes at critical points in the commonly
perturbed pathway(s) of a group of patients.
Availability: Source code available at htip/sbenz.github.com/Paradigm
Contact: jstuart@soe.ucsc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.



PARADIGM
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FIREHOSE

Firehose is an analysis infrastructure developed at The Broad Institute to coordinate the flow of
terabyte-scale datasets through dozens of quantitative algorithms.

Although still evolving, Firehose has become a valuable piece of The Broad Institute
computing infrastructure; it is used daily by dozens in the Cancer Genome Analysis group, to

perform all TCGA GDAC and GSC analyses, managing hundreds of thousands of jobs on tens
of thousands of samples, spread over hundreds of compute nodes and a 400+ TB file system.

/ Architecture \

/ Java Web Application \.'

Tomcat Servlet Container

Web Browser O S et s e s S
Stripes ; ;

JQuery ActionBeans | Monitors Connectors §
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NOZZLE

APPLICATIONS NOTE " iiiciosssicnsmatcsinitoss

Systems biology

Nozzle: a report generation toolkit for data analysis pipelines
Nils Gehlenborg'?, Michael S. Noble?, Gad Getz?, Lynda Chin®® and Peter J. Park'*

Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA, 2Cancer Program, Broad
Institute, Cambridge, MA 02142, USA and *Department of Genomic Medicine, MD Anderson Cancer Center, Houston,

TX 77230, USA
Associate Editor: Martin Bishop

Advance Access publication February 17, 2013

ABSTRACT

Summary: We have developed Nozzle, an R package that provides an
Application Programming Interface to generate HTML reports with
dynamic user interface elements. Nozzle was designed to facilitate
summarization and rapid browsing of complex results in data analysis
pipelines where multiple analyses are performed frequently on big
datasets. The package can be applied to any project where
user-friendly reports need to be created.

Availability: The R package is available on CRAN at http://cran.r-
project.org/package=Nozzle.R1. Examples and additional materials
are available at http://gdac.broadinstitute.org/nozzle. The source
code is also available at http://www.github.com/parklab/Nozzle.
Contact: peter_park@hms.harvard.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

http://gdac.broadinstitute.org/nozzle

Phase 1: create report elements

r <- newCustomReport( "My Report" );

s <- newSection( "My Section" );

ssl <- newSection( "My Subsection 1" );

ss2 <- newSection( "My Subsection 2" );

t <- newTable( iris[45:55,], "Iris data." );
p <- newParagraph( "Some sample text." );

Phase 2: assemble report structure bottom-up

ssl <- addTo( ssl, t ); # parent, child_1, ..., child_n
ss2 <- addTo( ss2, p );

s <- addTo( s, ssl, ss2 );

r <- addTo( r, s );

Phase 3: render report to file
writeReport( r, filename="my_report" ); # w/o extension

Fig. 1. Sample R script to create a basic Nozzle report that illustrates the
three phases of the bottom-up approach. See Supplementary Figure Sl
for the HTML report
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Fig. 2. A sample Nozze report. (a) Red markers indicate statistically
significant—as defined by the report author—results in this section. (b)
Red boxes indicate significant results. (¢) Underlined results have asso-
ciated supplementary information. Clicking opens the (d) Supplementary
Information panel



UCSC Cancer Genome Browser
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Table 1. Dataset summary

Cancer type DNA PARADIGM Gene Protein Copy number
methylation pathlette expression variation
TCGA acute myeloid leukemia 2 (384) 1 (179)
TCGA bladder urothelial carcinoma 1 (1) 2 (106) 5(221)
TCGA brain lower grade glioma 1 (26) 1(27) 2 (54) 6 (608)
TCGA breast invasive carcinoma 2 (994) 1 (502) 4 (2870) 1 (410) 6 (4808)
TCGA cervical and endocervical SCC 5 (244)
TCGA colon and rectum adenocarcinoma 1 (236) 1 (208) 1(229) 1 (463) 4 (2256)
TCGA colon adenocarcinoma 2 (498) 2 (366) 2 (894)
TCGA glioblastoma multiforme 2 (370) 1 (484) 4 (1693) 1 (215) 6 (3338)
TCGA head and neck squamous cell carcinoma 1 (342) 2 (555) 5 (1075)
TCGA kidney renal clear cell carcinoma 2 (861) 1 (69) 4 (1222) 1 (454) 6 (3028)
TCGA kidney renal papillary cell carcinoma 2 (146) 1 (16) 4 (126) 6 (340)
TCGA liver hepatocellular carcinoma 2 (52 5 (275)
TCGA lung adenocarcinoma 2 (406) 1 (32) 4 (488) 6 (1374)
TCGA lung squamous cell carcinoma 2 (354) 1 (136) 5 (925) 6 (1442)
TCGA ovarian serous cystadenocarcinoma 1 (590) 1 (546) 4 (1761) 1 (412) 6 (3366)
TCGA pancreatic adenocarcinoma 1 (36) 5 (70)
TCGA prostate adenocarcinoma 1 (202) 1 (60) 5 (446)
TCGA rectum adenocarcinoma 2 (178) 2 (144) 2 (339
TCGA skin cutaneous melanoma 1 (242) 1 (154) 2 (442)
TCGA stomach adenocarcinoma 2 (212) 1 (58) 5 (696)
TCGA thyroid carcinoma 1 (260) 1 (86) 5 (715)
TCGA uterine corpus endometrioid carcinoma 2 (488) 1(53) 3 (448) 1 (200) 6 (2312)
SU2C Breast Public 1 (54) 2 (92)
CCLE 2 (1934) 1 (972)
Other datasets from the literature 19 (3556) 17 (2206)

Number of datasets by cancer type and data type; values in parenthesis are number of samples.
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https://genome-cancer.ucsc.edu/



UCSC Cancer Genome Browser
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NCI| GDC Data Portal
) NATIONAL CANCER INSTITUTE

GDC Data Portal @ Projects %% Exploraton @ Analysis £ Repository

Harmonized Cancer Datasets

Q Quick Search  Manage Sets  #) Login  w=Cart[[J i GDC Apps

Genomic Data Commons Data Portal

Get Started by Exploring:

[[] Projects %% Exploration @ Analysis S

Repository

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Summary pata Release 13.0 - September 27, 2018

PROJECTS

PRIMARY SITES
43 & 69

CASES

& 33,096

FILES

GENES
[1358,092 £ 22,147

MUTATIONS

43,142,246

GDC Applications

The GDC Data Portal is a robust data-driven platform that allows cancer
researchers and bioinformaticians to search and download cancer data for analysis. The GDC applications include:

[

= = 3| = =
Data Portal Website Data Transfer Tool APl Data Submission Portal Documentation Legacy Archive

https://portal.gdc.cancer.gov/



|ICGC Data Portal

& |CGC Data Portal
=

( )

Data Release 14
September 26th, 2013

Q Advanced Search

About Us

The (Z'ICGC Data Portal provides tools for visualizing,

Information

Access Raw Data
querying and downloading the data released quarterly by Methods
the consortium's member projects. Submitter Tools

For release 13 and earlier please see the (Z'Legacy portal.

Tutorial

EXAMPLE QUERIES

New features will be regularly added by the DCC

development team. & Feedback is welcome.

-

. BRAF missense mutations in colorectal cancer
Subscribe to our Twitter W feed to get updates.

2. Most frequently mutated genes in stage Il malignant
lymphoma
W Follow @
Tweets 3. Brain cancer donors with frameshift mutations and

ICGC DCC @icgc_dcc having methylation data available
N OICR has been announced as a finalist for Cloudera’

Data Impact Awards! See goo.gl/P6UII3 for details!
Expand

DOWATCH THE VIDEO TUTORIAL.

Cancer projects 41
Jason H. Moore, Ph.D @moorejh Cancer primary sites 18
My 2012 review of #GYVAS with @vubush in #PLOS C  ponors 8,532
has had over 21,000 views.

ploscompbiol.org/article/info%3... #genomics #bioinf  simple somatic mutations 2,184,526

13 Retweeted by ICGC DCC

. 4,

& Show Summary Mutated genes 54,682

W See more news.

SITE INFORMATION DCC ICGC
Home Access Raw Data The Team ICGC Home \‘! , ‘
Cancer Projects Methods Contact Us Data Access
Advanced Search Submitter Tools Twitter Publication Policy #
Data Repository Legacy Portal Privacy Policy -

© 2013 International Cancer Genome Consortium. All Rights reserved.

http://dcc.icgc.org/

Terms and Conditions

z Ontario Institute
for Cancer Research



" cBioPortal

cBio Portal for Cancer Genomics

Data Sets Web APl R/MATLAB Tutorials FAQ News Visualize Your Data About

The cBioPortal for Cancer Genomics provides visualization, analysis and download of large-scale cancer genomics data sets.
Please cite Gao et al. Sci. Signal. 2013 & Cerami et al. Cancer Discov. 2012 when publishing results based on cBioPortal.

QUERY

Select Studies:
PanCancer Studies
Cell lines

Adrenal Gland
Ampulla of Vater
Biliary Tract
Bladder/Urinary Tract
Blood

Bone

Bowel

Breast

DOWNLOAD DATA

Select Data Type Priority:

Enter Gene Set:
Advanced: Onco Query Language (OQL)

0 studies selected (0 samples) Select all Search...

PanCancer Studies

) MSK-IMPACT Clinical Sequencing Cohort (MSKCC, Nat Med 2017)
(") Pan-Lung Cancer (TCGA, Nat Genet 2016)

Cell lines

(") Cancer Cell Line Encyclopedia (Novartis/Broad, Nature 2012)
"] NCI-60 Cell Lines (NCI, Cancer Res. 2012)

Adrenal Gland

Adrenocortical Carcinoma
) Adrenocortical Carcinoma (TCGA, Provisional)

Ampulla of Vater

Ampullary Carcinoma
() Ampullary Carcinoma (Baylor College of Medicine, Cell Reports 2016)

Dilinm: Teant

© Mutation and CNA () Only Mutation () Only CNA

User-defined List

Enter HUGO Gene Symbols or Gene Aliases

Please select one or more cancer studies.

http://www.cbioportal.org

10945 samples @ Lul &
1144 samples @ |lul &

1019 samples @ |lul &
60 samples @ lul &

92 samples @ |al

160 samples @ Ll &

What's New @cbioportal ¥
Sign up for low-volume email news alerts:

Subscribe
Cancer Studies
The portal contains 166 cancer studies (details)
Cases by Top 20 Primary Sites
Breast i

Lung
CNS/Brain

Prostate
Stomach |
Kidney ‘
Bowel

Blood

Heaaveck NI
Ovary
Thyroid --I
Uterus ‘

i
Liver |

pancreas [N
sen I
Bladder
Soft Tissue ‘
Cervix i
Bone ‘
Lymph

|
1
0 2000 4000 6000

Example Queries
RAS/RAF alterations in colorectal cancer
BRCA1 and BRCA2 mutations in ovarian cancer
POLE hotspot mutations in endometrial cancer
TP53 and MDM2/4 alterations in GBM
PTEN mutations in GBM In text format
BRAF VE00E mutations across cancer types
Patient view of an endometrial cancer case

Testimonials

“| want to thank you for the nice, useful and user-
friendly interface you have generated and shared with
the community.”

--Postdoctoral Fellow, Harvard Medical School,
Children's Hospital Boston

View All Tell Us What You Think



cBio Portal for Cancer Genomics

A
cBio Cancer Genomics Portal (cbioportal.org)
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Take Home Message

Cancer is caused by genetic alterations: Most human cancers are caused by
two to eight sequential alterations that develop over the course of 20 to 30 years.

Comprehensive Characterization of Cancer Genomes: can identify “driver”
mutations that contribute to cancer tumorigenesis.

Drivers act in regulating core cellular processes: The known driver genes
function through a dozen signaling pathways that regulate three core cellular
processes: cell fate determination, cell survival, and genome maintenance.

Pathway-centric Analysis of Cancer Genomes: Every individual tumor, even of
the same histopathologic subtype as another tumor, is distinct with respect to its
genetic alterations, but the pathways affected in different tumors are similar.

Tumor Heterogeneity: Genetic heterogeneity among the cells of an individual
tumor always exists and can impact the response to therapeutics.

Bioinformatics Tools: are needed to organize, analyze, interpret and visualize
large-scale cancer genomics data.



