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Outline

* |Introduction to microarray technology

» Methods for Identify Differentially Expressed
Genes
— Signal-to-noise Ratio (SNR) (Golub et al 1999)
— T-test
— False Discovery Rate (FDR)

— Significance Analysis of Microarrays (SAM)
(Tusher et al 2001)

— Methods Comparisons



Types of Microarray

* Two-channel microarrays

— Pre-synthesised cDNA arrays
(Glass/Nylon/Plastic slides)

— DIY
» Single channel microarrays

— In situ synthesised oligonucleotide arrays
(Chips)



cDNA microarray schema
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cDNA microarray of the Yeast genome
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GeneChip® Affymatrix
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GeneChip® Single Feature
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RIIA fragments with fluorescent tags from sample to be tested

Image courtesy of Affymetrix.
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Spotting the arrays

RED = Present (P) = highly expressed, detected by the detector
= Marginal (M) = expressed, “not sure” for the detector
= Absent (A) = maybe expressed, not detected by the detector




n genes

Gene Expression Profile

m samples
. .| Condition | Condition Condition
Geneid
1 2 m
Genel | 103.02 58.79 101.54
Gene2| 40.55 1246.87 1432.12
Gene n| 78.13 66.25 823.09




Gene expression data analysis

UNSUPERVISED LEARNING SUPERVISED LEARNING

Dataset
Known
Classes
Class A® Training Set
Unknown Class Be
Classes
l Train Model
l Cluster Samples P

[
1 Assign Class Labels ""T:fos‘:i'm
| Apply Model C (“Unknowns")

E)_E
16

Class A Class B Class A Class B
Class Discovery Class Prediction
Clustering (last week) This week

(Ramaswamy and Golub 2002)



Classification (Supervised Learning)

 Input: List of gene expressions and
samples with known phenotypes (e.qg.
cancer vs. normal)

* Goal: Find gene markers (features) that
distinguish one class from another class
(e.g. cancer vs. normal).

* Selected gene markers will be used in the
model for predicting new and unseen
samples.



How to ldentify Differentially Expressed
Genes? (2-class problem)

Expression distribution of Gene i

Normal
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Signal-to-Noise Ratio (SNR)
(Golub et al 1999)

X y
AML ALL

¢ =(1,1,1,1,1,1,0,0,0,0,0,0) [ 1”]

-~
gene] -(e])e2: €3, . .. ’312) —|

ﬂ_]— ST S w PO
oeney= (e ez s -+ o) I | 10 o]

For every gene i — —

SNR=_">"
(SS,+5S,)

Positive SNR = correlates with Class x (e.g. AML)
Negative SNR = correlates with Class y (e.g. ALL)



For gene i, compute t-score

« = number of samples in x (e.g. Cancer)
y = humber of samples in y (e.g. Normal)

X = mean gene expression of x samples

'Y = mean gene expression of y samples

SS, = standard deviation of gene expression in x samples

SS, = standard deviation of gene expression y samples

\ (n - _)2) (SSx +SSy)
x Ty



Example
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Is t-test an appropriate approach?

LS-1741 SK-CO-1

SW837 SW620
vV X VS. Z
SW1463 SW1116

SW948 RCM-1
T-Test P<0.05 2X Fold Difference

K-RAS DEPENDENCY |687 IND GENES
GENE SET 832 DEP GENES

Cell (2012). 148, 639-650

687 + 832 = 1519 DEG
Assume 23,000 genes in human genome

1519/23000 = 0.066 (~6.6 % of the genes are differentially expressed, more than
5%, p=0.05)

Is it by chance? False positive? False Discovery? How to control it?



False Discovery Rate (FDR)

 FDR control is a statistical method used In
multiple hypothesis testing to correct for
multiple comparisons.

 FDR procedures are designed to control the
expected proportion of incorrectly rejected
null hypotheses (“false discoveries”).

* Less stringent than family wise error rate
(FWER) procedures (such as the Bonferroni
correction).



Remember the 2x2 Contingency Table?

Test Result
Positive Negative
Positive | True Positive False Positive
Actual (Type | Error)
Negative | False Negative True Negative
(Type Il Error)




FDR

Instead of controlling type | error (false positive), FDR controls the
expected proportion of false positives.
FDR definition:

- R is observable random variable.

-V is non-observable random variable.

- FDRis the expectation of random variable V/R

Test Result Total
Positive Negative
Positive U \' m,
Actual (True Positive) (False Positive)

(Type | Error)

Negative T R m-m,
(False Negative) (True Negative)
(Type Il Error)

Total m-R R m




Significance Analysis of Microarrays
(SAM)

Significance analysis of microarrays applied to the
ionizing radiation response

Virginia Goss Tusher*, Robert Tibshirani, and Gilbert Chu*# 5116-5121 | PNAS | April 24,2001 | vol.98 | no.9

« “assigns a score to each gene on the basis of change in gene
expression relative to the standard deviation of repeated
measurements.”

« SAM uses permutations of repeated measurements to estimate the
False Discovery Rate

» Paper available online: http://www-
stat.stanford.edu/~tibs/SAM/pnassam.pdf

« Today’s practical and assignment




Overview of SAM

Calculate “relative difference” — a value that
Incorporates the change in expression between
conditions and the variation of measurements in
each condition

Calculate “expected relative difference” —
derived from controls generated by permutations
of data

Plot against each other, set cutoff to identify
deviating genes

Calculate FDR for chosen cutoff from the control
permutations

(Adapted from OHRI Bioinformatics Slides 2006)



Relative Difference
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Relative Difference

PR EAOEEA0
2 s(1)+ s,

— N = (2 Mean expression of gene i in
xl (l)"xU (l) condition | or U (e.g. Cancer vs

Normal)

(Adapted from OHRI Bioinformatics Slides 2006)



Relative Difference
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Relative Difference

~_ X () =X, (1)
A= s(1) +s,

Small positive constant
SO calculated to minimize
coefficient of variation.

(Adapted from OHRI Bioinformatics Slides 2006)
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relative difference d(i)

Relative difference vs. Gene scatter
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Plotting d(i) vs s(i)
_ )—Cl (l) B )—CU (l)
(D) + s,

Comparing 4 shaded vs 4 non-shaded
samples

A: Relative differences between irradiated
and unirradiated states

B: Relative differences between cell lines

C: Relative differences between
hybridizations (technical replicates)

D: Relative differences between ‘balanced’
permutation (Extra control)

d()

(Adapted from OHRI Bioinformatics Slides 2006)



SAM creates controls via permutation

« Consider permutations of the samples used.
» Calculate d,(i) for each permutation p

* Average all d,(i) to get ‘expected relative
difference’ : d(i)

(Adapted from OHRI Bioinformatics Slides 2006)



Finding significant genes
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False Discovery Rate

« Take observed d(i)
values for upper and

lower cutoffs

* Find the mean number
of genes exceeding
these cutoffs in the
permuted data - this
gives an estimate for

FDR

relative difference d(i)

observed relative difference d(i)
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SAM Output
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Which method is better?

OPEN 8 ACCESS Freely available online ' PLOS one

Should We Abandon the #Test in the Analysis of Gene
Expression Microarray Data: A Comparison of Variance
Modeling Strategies

Marine Jeanmougin®?3%*, Aurelien de Reynies’, Laetitia Marisa', Caroline Paccard?, Gregory Nuel®,
Mickael Guedj'?

1 Programme Cartes d'ldentité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France, 2 Department of Biostatistics, Pharnext, Paris, France, 3 Department of
Applied Mathematics (MAP5) UMR CNRS 8145, Paris Descartes University, Paris, France, 4 Statistics and Genome Laboratory UMR CNRS 8071, University of Evry, Evry, France

Abstract

High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical
research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test,
which is subject of criticism in the literature. Numerous altematives have been developed based on different and innovative
variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In
this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains
crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling
strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and
SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to
formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate,
execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected
number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement
compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages,
so we advocate its application to analyze gene expression data.

[33 citations]



Methods

Welch t-test
ANOVA
Wilcoxon’s test

SAM (Tusher et al 2001) — Significance Analysis of Microarrays
(www-stat.stanford.edu/~tibs/SAM/) [8954 citations]

RVM (Wright & Simon, 2003) — Random Variance Model [BRB-
ArrayToolshttp://linus.nci.nih.gov/BRB-ArrayTools.html).] [393
citations]

Limma (Smyth 2005) — Linear Models for Microarray Data (available
as limma package in R/Bioconductor) [1883 citations]

VarMixt (Delmar, Robin, Daudin 2004) — Variance Mixture model
(formerly available as varmixt package in R/Bioconductor) [89
citations]

SMVar (Jaffrézic et al 2007) — Structural Mixed Model for
Variance(available as SMVar package in R/Bioconductor) [28
citations]




Data Sets and Testing Methods

Testing Methods:

Table 1. Data sets used for the gene list analysis.

1. Gene selection — compare the

Data-set Groups Sample size  Publication common aenes ( < O 05)
Lymphoid Disease staging 37 Lamant et al. 2007 [26] 2 S . g p .

P . Simulation — test for False

Liver tumors  TP53 mutation 65 Boyault et al. 2007 [27] Discovery Rate (FDR)

Head and Gender 81 Rickman et al. 2008 [28] 3. Spike_in data — test for true fold-
neck tumors

Leukemia Gender 104 Soulier et al. 2006 [29] Change and FDR

Bertheau et al, 2007 [30] 4. Re-sampling — test for small
samples

Breast tumors  ESR1 expression 500

The five data sets come from the Cartes d1dentité des Tumeurs (CIT, http://cit.
ligue-cancer.net) program and are publicly available. All the microarrays are
Affymetrix U133A microarrays with 22,283 genes.
doi:10.1371/joumal.pone.0012336.t001



Gene List Analysis

Principal Component Analysis Dendrogram
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Figure 2. Gene list analysis. PCAs and dendrograms are generated based on the gene lists resulting from the application of the eight tests of
interest and the control-test. Here we show results for two data sets comparing ESR1 expression in breast cancer and gender in leukemia. Both
outline five clusters of tests.

doi:10.1371/journal.pone.0012336.g002



False Positive Rate

Table 2. False-positive rate study from simulations.

M1 M2 m3 e
Sample size n=>5 n=100 n=5 n=100 n=5 n=100 n=S5 n=100
t-test” 3.8—4.6 45-54 40-48 4.6-—55 3.8—4.6 4.7-5.6 39-47 44-53
ANOVA 4.5-52 45-54 4.7-5.6 4.6-—5.5 45-54 4.7-5.6 45-53 44-53
Wilcoxon” 2.8-35 4.6-55 26-3.3 45-54 2.8-35 4.7-56 27-34 45-54
SAM 4.6-—5.5 45-53 42-5.1 45-54 4.7-5.6 4.7-5.6 43-52 44-53
RVM4 57—-6.7 45-54 5.6—6.5 45-54 54-6.3 4.7-5.6 53-62 4.7-55
limma 4.6-—5.5 4.6-5.5 42-5.1 45-54 4.7-5.6 4.7-5.6 44-53 43-5.1
SMVar4 7.0—8.1 4.7-5.6 - - 59-6.8 48-5.7 46—55 45-53
VarMixt 4755 4.6-5.5 43-52 4.6-—5.5 48-5.6 4.6-5.5 45-54 4.5-53

For small and large samples, this table presents the 95% confidence-interval of false-positive rate obtained by applying a threshold of 0.05 to the p-values. Up triangles
A (resp. down triangles ¥) indicate an increase (resp. a decrease) of the false-positive rate compared to the expected level of 5%. Two triangles inform of a deviation in
both small and large sample sizes.

doi:10.1371/joumal.pone.0012336.t002



Table 3. Summary table.

Summary

False-positive rate

Power

In practice

Small samples

Large samples

Small samples

Large samples

Ease of use

Execution time

t-test
ANOVA
Wilcoxon
SAM
RVM
limma
VarMixt
SMVar
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This table summarizes the results of our study in terms of false-positive rate, power and practical criteria. The number of “+" indicates the performance, from weak (+),
to very good one (+#+).
doi:10.1371/joumal.pone.0012336.t003



Biology trumps statistics - Example

TAK1 Inhibition Promotes Apoptosis
in KRAS-Dependent Colon Cancers
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Figure 7. A Model for Context-Specific KRAS Dependency in Colon
Cancers

In KRAS-independent colon cancers, APC loss of function results in hyper-
activation of canonical Wnt signaling through stabilization of B-catenin in
cooperation with upstream Wnt activators. TAK1 can be a negative regulator of
canonical Wnt signaling in these cells. In KRAS-dependent cells, oncogenic
KRAS upregulates BMP-7 expression/secretion, activating the BMP receptor
and resulting in TAK1 activation. KRAS and TAK1 in these cells are activators
of Wnt signaling by promoting B-catenin nuclear localization, which is stabi-
lized by virtue of APC loss-of-function mutations. KRAS-mediated anti-
apoptotic signaling could also be facilitated by NF-«B activation. Dashed lines
represent unknown molecular interactions.

See also Figure S6.



Take home message

Consider FDR in selecting differentially
expressed genes

Compare with multiple methods

Overlapping genes identified from different
methods enhance the real signals

Biology trumps statistics — if you can
validate the genes



